×

zbMATH — the first resource for mathematics

Bergman completeness of hyperconvex manifolds. (English) Zbl 1061.32010
The author shows the Bergman completeness of any hyperconvex manifold. This result generalizes work of Z. Blocki and P. Pflug [Nagoya Math. J. 151, 221–225 (1998; Zbl 0916.32016)], and [G. Herbort, Math. Z. 232, 183–196 (1999; Zbl 0933.32048)]. The methods applied in the proof are inspired by those of the article by Blocki-Pflug.

MSC:
32F45 Invariant metrics and pseudodistances in several complex variables
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/PL00004754 · Zbl 0933.32048
[2] Function theory on manifolds which possess a pole (1979) · Zbl 0414.53043
[3] DOI: 10.1007/BF01161920 · Zbl 0595.32006
[4] Ann. Sci. Ec. Norm. Sup. 15 pp 457– (1982) · Zbl 0507.32021
[5] DOI: 10.1090/S0002-9947-02-02989-6 · Zbl 0997.32011
[6] Ann. Pol. Math. LXXI pp 241– (1999)
[7] Ann. Pol. Math. 50 pp 219– (1989)
[8] Math. Ann. 175 pp 257– (1968)
[9] Bull. Pol. Acad. Sci. 41 pp 151– (1993)
[10] Nagoya Math. J. 149 pp 1– (1998) · Zbl 0911.32027
[11] DOI: 10.2977/prims/1195180870 · Zbl 0569.32013
[12] Hyperbolic Complex spaces, A Series of Comprehensive Studies in Mathematics, 318 (1998)
[13] DOI: 10.1090/S0002-9947-1959-0112162-5
[14] Nagoya Math. J. 151 pp 221– (1998) · Zbl 0916.32016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.