zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Comment on: “On the extended applications of homogeneous balance method”. (English) Zbl 1061.35108
Summary: We show that all results presented in Senthilvelan’s paper can be actually obtained by a direct method [cf. {\it M. Senthilvelan}, ibid. 123, 381--388 (2001; Zbl 1032.35159)].

35Q53KdV-like (Korteweg-de Vries) equations
37K40Soliton theory, asymptotic behavior of solutions
Full Text: DOI
[1] Drazin, P. G.; Johnson, R. S.: Solitons: an introduction. (1989) · Zbl 0661.35001
[2] Ablowitz, M. J.; Segur, H.: Solitons and the inverse scattering transform. (1981) · Zbl 0472.35002
[3] Cariello, F.; Tabor, M.: Painlevé expansions for nonintegrable evolution equations. Phys. D 39, 77-94 (1989) · Zbl 0687.35093
[4] Hereman, W.; Takaoka, M.: Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA. J. phys. A (Math. Gen.) 23, 4805-4822 (1990) · Zbl 0719.35085
[5] Wang, M.: Exact solutions for a compound KdV--Burgers equation. Phys. lett. A 213, 279-287 (1996) · Zbl 0972.35526
[6] Lan, H.; Wang, K.: Exact solutions for some coupled nonlinear equations II. J. phys. A (Math. Gen.) 23, 4097-4106 (1990) · Zbl 0728.35115
[7] Malfljet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys 60, 650-654 (1992) · Zbl 1219.35246
[8] Gao, Y. T.; Tian, B.: Generalized tanh method with symbolic computation and generalized shallow water wave equation. Comput. math. Appl 33, 115-118 (1997) · Zbl 0873.76061
[9] Senthilvelan, M.: On the extended applications of homogenous balance method. Appl. math. Comput 123, 381-388 (2001) · Zbl 1032.35159
[10] Paquin, G.; Winternitz, P.: Group theoretical analysis of dispersive long wave equations in two space dimensions. Phys. D 46, 122-138 (1990) · Zbl 0725.35104
[11] Dorizzi, B.; Grammaticos, B.; Ramani, A.; Winternitz, P.: Are all the equations of the Kadomtsev--Petviashvili hierarchy integrable. J. math. Phys 27, 2848-2852 (1986) · Zbl 0619.35086
[12] Faucher, M.; Winternitz, P.: Symmetry analysis of the Infeld--rowlands equation. Phys. rev. E 48, 3066-3071 (1993)