Feng, Zhaosheng Comment on: “On the extended applications of homogeneous balance method”. (English) Zbl 1061.35108 Appl. Math. Comput. 158, No. 2, 593-596 (2004). Summary: We show that all results presented in Senthilvelan’s paper can be actually obtained by a direct method [cf. M. Senthilvelan, ibid. 123, 381–388 (2001; Zbl 1032.35159)]. Cited in 8 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems Keywords:Solitary wave; Traveling wave solution; Homogeneous balance; Evolution equation Citations:Zbl 1032.35159 Software:MACSYMA PDF BibTeX XML Cite \textit{Z. Feng}, Appl. Math. Comput. 158, No. 2, 593--596 (2004; Zbl 1061.35108) Full Text: DOI OpenURL References: [1] Drazin, P.G.; Johnson, R.S., Solitons: an introduction, (1989), Cambridge University Press Cambridge · Zbl 0661.35001 [2] Ablowitz, M.J.; Segur, H., Solitons and the inverse scattering transform, (1981), SIAM Philadelphia · Zbl 0299.35076 [3] Cariello, F.; Tabor, M., Painleve expansions for nonintegrable evolution equations, Phys. D, 39, 77-94, (1989) · Zbl 0687.35093 [4] Hereman, W.; Takaoka, M., Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA, J. phys. A (math. gen.), 23, 4805-4822, (1990) · Zbl 0719.35085 [5] Wang, M., Exact solutions for a compound kdv – burgers equation, Phys. lett. A, 213, 279-287, (1996) · Zbl 0972.35526 [6] Lan, H.; Wang, K., Exact solutions for some coupled nonlinear equations II, J. phys. A (math. gen.), 23, 4097-4106, (1990) · Zbl 0728.35115 [7] Malfljet, W., Solitary wave solutions of nonlinear wave equations, Am. J. phys, 60, 650-654, (1992) · Zbl 1219.35246 [8] Gao, Y.T.; Tian, B., Generalized tanh method with symbolic computation and generalized shallow water wave equation, Comput. math. appl, 33, 115-118, (1997) · Zbl 0873.76061 [9] Senthilvelan, M., On the extended applications of homogenous balance method, Appl. math. comput, 123, 381-388, (2001) · Zbl 1032.35159 [10] Paquin, G.; Winternitz, P., Group theoretical analysis of dispersive long wave equations in two space dimensions, Phys. D, 46, 122-138, (1990) · Zbl 0725.35104 [11] Dorizzi, B.; Grammaticos, B.; Ramani, A.; Winternitz, P., Are all the equations of the kadomtsev – petviashvili hierarchy integrable, J. math. phys, 27, 2848-2852, (1986) · Zbl 0619.35086 [12] Faucher, M.; Winternitz, P., Symmetry analysis of the infeld – rowlands equation, Phys. rev. E, 48, 3066-3071, (1993) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.