×

The initial value problem for the 1-D semilinear Schrödinger equation in Besov spaces. (English) Zbl 1061.35137

The authors study the semilinear Schrödinger equation
\[ \partial_t u=i \partial_x^2 u+N(u,\overline u) \] with \(u(x,0)=u_0(x)\), \(x\in \mathbb R\). The solution \(u\) is expressed by
\[ u(x,t)=W(t)u_0(x)+ \int_{[0, t]} W(t-t') N(u,\overline u) (x,t')\,dt', \]
\(\{W(t)f\}(x,t)= F_x^{-1}e^{itP (\varepsilon)} F_x(x,t)\), \(P(\xi)=\pm \xi^2\). They define the Besov type spaces \(B_{A'}^A (\mathbb R^{d+1})\); \(A=(\rho,b)\), \(A'=p,q,P, B_{A'}^{A,\#} (\mathbb R^{d+1})\); \(A=(s,b)=(z^s,b)\), \(A'=2\), \(q,P, B^\rho_{p,q} (\mathbb R^d)\) and \(B^{s,\#}_{2,q}(\mathbb R^d)\) of the tempered distributions. They use \(\widehat f_{jk,P} (\xi,\tau)=\varphi_j(|\xi|)\). \(\varphi_k(\tau- P (\xi)) \widehat f(\xi,\tau)\) etc., \(\{\varphi_j\}\): a sequence of \(C_0^\infty\)-functions. Bilinear estimates hold in \(B^A_A (\mathbb R^{d+ 1})\) and \(B^{A,\#}_{A'}(\mathbb R^{d+1})\).
Main Theorem: (I) If \(N(u, \overline u)=c_1u^2+c_2\overline u^2\) and \(u_0\in B^{-3/4}_{2,1} (\mathbb R)\), then there exist \(T=T(\| u_0\|)>0\) and a unique solution \(u(x,t)=W(t)u_0(x)+v(x,t)\) in \(\mathbb R\times I_T\), \(I_T=(-T,T)\). Here \(v\in B^A_A (\mathbb R\times I_T)\); \(A=(\rho,1/2)= (z^s\log(2+z), 1/2)\), \(A'= 2\), \(1,-|\xi|^2\), and \(s\geq-3/4\).
(II) If \(N(u,\overline u)= c_3u\overline u\) and \(u_0\in B^{-1/4, \#}_{2,1}(\mathbb R)\), then there exist \(T=T(\| u_0 \|)>0\) and a unique solution \(u(x,t)\in B^{A,\#}_{A'} (\mathbb R\times I_T)\); \(A=(-1/4,1/2)\). \(A'=2,1,-|\xi|^2\).

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35G25 Initial value problems for nonlinear higher-order PDEs
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46F05 Topological linear spaces of test functions, distributions and ultradistributions
PDF BibTeX XML Cite
Full Text: DOI