Berkani, M.; Arroud, A. Generalized Weyl’s theorem and hyponormal operators. (English) Zbl 1061.47021 J. Aust. Math. Soc. 76, No. 2, 291-302 (2004). A Banach space operator \(T\in B(X)\) is ‘B-Fredholm’ if there exists a natural number for which the induced operator \(T_n:T^n(X)\longrightarrow T^n(X)\) is Fredholm (in the usual sense); \(T\) is ‘B-Weyl’ if \(T_n\) has index \(0\), and \(T\) satisfies the generalized Weyl’s theorem if the complement in \(\sigma(T)\) of the set of \(\lambda\) for which \(T-\lambda\) fails to be B-Weyl consists of the set of isolated points of \(\sigma(T)\) which are eigenvalues of \(T\) (with no restriction on multiplicity). The authors prove that hyponormal (Hilbert space) operators satisfy the generalized Weyl’s theorem, and that the B-Weyl spectrum of such an operator satisfies the spectral mapping theorem. Reviewer: B. P. Duggal (Al Ain) Cited in 1 ReviewCited in 24 Documents MSC: 47B20 Subnormal operators, hyponormal operators, etc. 47A53 (Semi-) Fredholm operators; index theories 47A55 Perturbation theory of linear operators Keywords:B-Fredholm operator; B-Weyl spectrum; generalized Weyl’s theorem; hyponormal operator; spectral mapping theorem PDF BibTeX XML Cite \textit{M. Berkani} and \textit{A. Arroud}, J. Aust. Math. Soc. 76, No. 2, 291--302 (2004; Zbl 1061.47021) Full Text: DOI References: [1] DOI: 10.1017/S0017089500030147 · Zbl 0979.47004 [2] DOI: 10.1006/jmaa.1997.5897 · Zbl 0998.47012 [3] DOI: 10.4064/sm148-3-4 · Zbl 1005.47012 [4] Berkani, Acta Sci. Math. (Szeged) 69 pp 359– (2003) [5] DOI: 10.1090/S0002-9939-01-06291-8 · Zbl 0996.47015 [6] DOI: 10.2307/2308576 · Zbl 0083.02901 [7] DOI: 10.1016/S0022-247X(02)00179-8 · Zbl 1043.47004 [8] DOI: 10.1007/BF01236475 · Zbl 0939.47010 [9] DOI: 10.1007/BF01236471 · Zbl 0948.47002 [10] DOI: 10.1007/BF03019655 · JFM 40.0395.01 [11] Schechter, Principles of functional analysis (1971) [12] Roch, Studia Math. 136 pp 197– (1999) [13] Oberai, Illinois J. Math. 21 pp 84– (1977) [14] Lee, Glasgow Math. J. 38 pp 61– (1996) [15] Lee, Math. Japon. 43 pp 549– (1996) [16] DOI: 10.1007/BF01351564 · Zbl 0177.17102 [17] Koliha, Glasgow Math. J. 38 pp 367– (1996) [18] DOI: 10.1307/mmj/1031732778 · Zbl 0173.42904 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.