zbMATH — the first resource for mathematics

MooNMD – a program package based on mapped finite element methods. (English) Zbl 1061.65124
Summary: The basis of mapped finite element methods are reference elements where the components of a local finite element are defined. The local finite element on an arbitrary mesh cell will be given by a map from the reference mesh cell.
This paper describes some concepts of the implementation of mapped finite element methods. From the definition of mapped finite elements, only local degrees of freedom are available. These local degrees of freedom have to be assigned to the global degrees of freedom which define the finite element space. We present an algorithm which computes this assignment.
The second part of the paper shows examples of algorithms which are implemented with the help of mapped finite elements. In particular, we explain how the evaluation of integrals and the transfer between arbitrary finite element spaces can be implemented easily and computed efficiently.

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65Y15 Packaged methods for numerical algorithms
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI
[1] Bastian, No article title, Comput. Visual. Sci., 1, 27, (1997) · Zbl 0970.65129
[2] Behns, V.: Mortar-Techniken zur Behandlung von Grenzschichtproblemen. PhD thesis, Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, 2001
[3] Boffi, No article title, Int. J. Num. Meth. Fluids,, 39, 1001, (2002) · Zbl 1101.76352
[4] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods. Vol. 15. Texts in Applied Mathematics. New York: Springer-Verlag 1994 · Zbl 0804.65101
[5] Ciarlet, P. G.: Basic error estimates for elliptic problems. In P.G. Ciarlet and J.L. Lions, (eds.) Handbook of Numerical Analysis II, pp. 19-351. Amsterdam, New York, Oxford, Tokyo: North-Holland 1991 · Zbl 0875.65086
[6] Dunca, A., John, V., Layton, W. J.: Approximating local averages of fluid velocities: the equilibrium Navier-Stokes equations. Appl. Numer. Math., to appear, 2003 · Zbl 1146.76605
[7] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes equations. Berlin-Heidelberg-New York: Springer-Verlag 1986 · Zbl 0585.65077
[8] Iliescu, No article title, Int. J. Comput. Fluid Dyn., 17, 75, (2003) · Zbl 1148.76327
[9] John, V.: Reference values for drag and lift of a two-dimensional time dependent flow around a cylinder. submitted to Int. J. Num. Meth. Fluids · Zbl 1085.76510
[10] John, No article title, Int. J. Num. Meth. Fluids, 40, 775, (2002) · Zbl 1076.76544
[11] John, V.: Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models. Lecture Notes in Computational Science and Engineering 34. Berlin, Heidelberg, New York: Springer-Verlag 2003
[12] John, No article title, J. Comp. Appl. Math., 147, 287, (2002) · Zbl 1021.76028
[13] John, V.: The behaviour of the rational LES model in a two-dimensional mixing layer problem. Preprint 28, Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, 2002
[14] John, No article title, Computing,, 68, 313, (2002) · Zbl 1006.65137
[15] John, No article title, Computing,, 66, 269, (2001) · Zbl 0991.76043
[16] John, No article title, Int. J. Num. Meth. Fluids,, 37, 885, (2001) · Zbl 1007.76040
[17] Lavrova, O., Matthies, G., Mitkova, T., Polevikov, V., Tobiska, L.: Finite element methods for coupled problems in ferrohydrodynamics. In E. Bänsch (ed.) Challenges in Scientific Computing - CISC 2002, Lecture Notes in Computational Science and Engineering 35. Berlin, Heidelberg, New York: Springer-Verlag, 160-183, 2003 · Zbl 1138.76385
[18] Matthies, G.: Finite element methods for free boundary value problems with capillary surfaces. Shaker Verlag, Aachen, 2002. PhD thesis, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg
[19] Matthies, No article title, Computing,, 69, 119, (2002) · Zbl 1016.65073
[20] Schieweck, F.: A general transfer operator for arbitrary finite element spaces. Preprint 25, Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, 2000
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.