zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical investigation for the solitary waves interaction of the ”good” Boussinesq equation. (English) Zbl 1061.76042
Summary: The “good” Boussinesq equation is studied numerically using an iterative implicit finite difference scheme. The stability and accuracy of the proposed method are discussed. Soliton solutions are shown to exist for a finite range of amplitude size. The features of break-up and blow-up of solution are also witnessed. The reported results are in conformity with available results.

76M20Finite difference methods (fluid mechanics)
76B25Solitary waves (inviscid fluids)
Full Text: DOI
[1] Agnon, Y.; Madsen, P. A.; Schoffer, H. A.: A new approach to high-order Boussinesq models. J. fluid mech. 399, 319-333 (1999) · Zbl 0960.76011
[2] Ames, W. F.: Numerical methods for partial differential equations. (1965) · Zbl 0176.39701
[3] Bellman, R. E.; Kalaba, R. E.: Quasilinearization and nonlinear boundary value problems. (1965) · Zbl 0139.10702
[4] Bratsos, A. G.: The solution of the Boussinesq equation using the method of lines. Comput. methods appl. Mech. engrg. 157, 33-44 (1998) · Zbl 0952.76068
[5] Hirota, R.: Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices. J. math. Phys. 14, 810-814 (1973) · Zbl 0261.76008
[6] Iskandar, L.; Jain, P. C.: Numerical solution of equations having inelastic soliton wave interaction. Comput. math. Appl. 6, 373-383 (1980) · Zbl 0444.76011
[7] Manoranjan, V. S.; Mitchell, A. R.; Morris, J. L.: Numerical solutions of the ”good” Boussinesq equation. SIAM J. Sci. statist. Comput. 5, 946-957 (1984) · Zbl 0555.65080
[8] Manoranjan, V. S.; Ortega, T.; Sang-Serna, J. M.: Soliton and antisoliton interactions in the ”good” Boussinesq equation. J. math. Phys. 29, 1964-1968 (1988) · Zbl 0673.35089
[9] Mckean, H. P.: Boussinesq’s equation on the circle. Comm. pure appl. Math. 34, 599-691 (1981) · Zbl 0473.35070
[10] Ortega, T.; Sanz-Sema, J. M.: Nonlinear stability and convergence of finite-difference methods for the ”good” Boussinesq equation. Numer. math. 58, 215-229 (1990) · Zbl 0749.65082
[11] Richtmyer, R. D.; Morton, K. W.: Difference methods for initial value problems. (1967) · Zbl 0155.47502
[12] Schneider, G.: The long wave limit for a Boussinesq equation. SIAM J. Appl. math. 58, 1237-1245 (1992) · Zbl 0911.35105
[13] Zakharov, V. B.: Randomization problem for one-dimensional chains of nonlinear operators. Zh. eksper. Theoret. fiz. 65, 219-228 (1973)