zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A novel criterion for delayed feedback control of time-delay chaotic systems. (English) Zbl 1061.93507
Summary: This paper investigated stability criterion of time-delay chaotic systems via delayed feedback control (DFC) using the Lyapunov stability theory and linear matrix inequality (LMI) technique. A stabilization criterion is derived in terms of LMIs which can be easily solved by efficient convex optimization algorithms. A numerical example is given to illuminate the design procedure and advantage of the result derived.

MSC:
93C10Nonlinear control systems
37D45Strange attractors, chaotic dynamics
Software:
LMI toolbox
WorldCat.org
Full Text: DOI
References:
[1] Mackey, M.; Glass, L.: Oscillation and chaos in physiological control system. Science 197, 287-289 (1977)
[2] Lu, H.; He, Z.: Chaotic behavior in first-order autonomous continuous-time systems with delay. IEEE trans. Circuit syst. 43, 700-702 (1996)
[3] Tian, Y.; Gao, F.: Adaptive control of chaotic continuous-time systems with delay. Physica D 117, 1-12 (1998) · Zbl 0941.93534
[4] Hale, J.; Lunel, S. M. Verduyn: Introduction to functional differential equations. (1993) · Zbl 0787.34002
[5] Richard, J. P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39, 1667-1694 (2003) · Zbl 1145.93302
[6] Park, J. H.: Robust stabilization for dynamic systems with multiple time-varying delays and nonlinear uncertainties. J. optim. Theory appl. 108, 155-174 (2001) · Zbl 0981.93069
[7] Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. lett. A 170, 421-428 (1992)
[8] Chen, G.; Yu, H.: On time-delayed feedback control of chaotic systems. IEEE trans. Circuit syst. 46, 767-772 (1999) · Zbl 0951.93034
[9] Guan, X. P.; Chen, C. L.; Peng, H. P.; Fan, Z. P.: Time-delayed feedback control of time-delay chaotic systems. Int. J. Bifurcat. chaos 13, 193-205 (2003) · Zbl 1129.93399
[10] Sun, J.: Delay-dependent stability criteria for time-delay chaotic systems via time-delay feedback control. Chaos, solitons & fractals 21, 143-150 (2004) · Zbl 1048.37509
[11] Park JH, Kwon OM. LMI optimization approach to stabilization of time-delay chaotic systems. Chaos, Solitons & Fractals, in press
[12] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos. Phys. rev. Lett. 64, 1196-1199 (1990) · Zbl 0964.37501
[13] Yue, D.; Won, S.: Delay-dependent robust stability of stochastic systems with time delay and nonlinear uncertainties. Elect. lett. 37, 992-993 (2001) · Zbl 1190.93095
[14] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in systems and control theory. (1994) · Zbl 0816.93004
[15] Gu K. An integral inequality in the stability problem of time-delay systems. In: Proc IEEE CDC, Australia, December 2000. p. 2805--10
[16] Gahinet, P.; Nemirovski, A.; Laub, A.; Chilali, M.: LMI control toolbox user’s guide. (1995)
[17] Shobukhov, A.: Complex dynamic behavior in a model of electro-optic device with time-delayed feedback. Int. J. Bifurcat. chaos 8, 1347-1354 (1998)