zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of chaotic systems with parametric uncertainty using active sliding mode control. (English) Zbl 1061.93514
Summary: This paper presents an active sliding mode control method for synchronizing two chaotic systems with parametric uncertainty. And a sufficient condition is drawn for the robust stability of the error dynamics, and is applied to guiding the design of the controllers. Finally, numerical results are used to show the robustness and effectiveness of the proposed control strategy.

93C10Nonlinear control systems
37D45Strange attractors, chaotic dynamics
93B12Variable structure systems
Full Text: DOI
[1] Pecora, L. M.; Carroll, T. L.: Phys. rev. Lett.. 64, 821-824 (1990)
[2] Closson, T. L. L.; Roussel, M. R.: Phys. rev. Lett.. 85, 3974-3977 (2000)
[3] Murakami, A.; Ohtsubo, J.: Phys. rev. E. 63, 066203 (2001)
[4] Tsukamoto, N.: Phys. rev. E. 67, 016212 (2003) · Zbl 1081.34044
[5] Pyragas, K.: Phys. lett. A. 170, 421-428 (1992)
[6] Yang, T.; Chua, L. O.: IEEE trans. Circuits syst. I. 44, 976-988 (1997)
[7] Arecchi, F. T.: Int. J. Bifurc. chaos. 8, 1643-1655 (1998) · Zbl 0941.93529
[8] Itoh, M.: Int. J. Bifurc. chaos. 11, 551-560 (2001)
[9] Zhang, H.; Ma, X. K.: Acta phys. Sin.. 52, 2415-2420 (2003)
[10] Chen, G. R.: Controlling chaos and bifurcations in engineering. (1999)
[11] Martens, M.: Chaos. 12, 316-323 (2002)
[12] Chen, G. R.: Chaos, solitons & fractals. 8, 1461-1470 (1997)
[13] Bai, E. W.: Chaos, solitons & fractals. 8, 51-58 (1997)
[14] Bai, E. W.: Chaos, solitons & fractals. 11, 1041-1044 (2000)
[15] Agiza, H. N.; Yassen, M. T.: Phys. lett. A. 278, 191-197 (2001)
[16] Ho, M. C.: Phys. lett. A. 301, 424-428 (2002)
[17] Zhang, H.; Ma, X. K.: Chaos, solitons & fractals. 21, 39-47 (2004)
[18] Yu, X. H.: Chaos, solitons & fractals. 8, 1577-1586 (1997)
[19] Konishi, K.: Phys. lett. A. 245, 511-517 (1998)
[20] Yau, H.: Int. J. Bifurc. chaos. 10, 1139-1147 (2000)
[21] Hung, J. Y.: IEEE trans. Indust. electron.. 40, 2-22 (1993)
[22] Young, K. D.: IEEE trans. Control systems technol.. 7, 328-342 (1999)
[23] Hu, Y. M.: Variable structure control theory and its applications. (2003)
[24] Lu, J. H.: Int. J. Bifurc. chaos. 12, 659-661 (2002)
[25] Lu, J. H.: Int. J. Bifurc. chaos. 12, 2917-2926 (2002)