×

Forbidden forests in Priestley spaces. (English) Zbl 1062.06020

Many important classes of distributive lattices \(L\) can be characterized by forbidding their Priestley duals \(P(L)\) to contain a given finite poset \(T\). The authors show that, conversely, for any forest \(T\), the corresponding class of distributive lattices has a first-order axiomatization.

MSC:

06D50 Lattices and duality
06D05 Structure and representation theory of distributive lattices
PDFBibTeX XMLCite
Full Text: Numdam EuDML

References:

[1] M.E. Adams and R. Beazer , Congruence properties of distributive double p-algebras , Czechoslovak Math.J. 41 ( 1991 ), 395 - 404 . Article | MR 1117792 | Zbl 0758.06009 · Zbl 0758.06009
[2] B. Banaschewski and A. Pultr , Variants of openness , Applied Categorical Structures 2 ( 1994 ), 331 - 350 . MR 1300720 | Zbl 0810.54017 · Zbl 0810.54017 · doi:10.1007/BF00873038
[3] M. Darnel , Theory of Lattice-Ordered Groups , Pure and Applied Mathematics 187 , Marcel Dekker, Inc. , 1995 . MR 1304052 | Zbl 0810.06016 · Zbl 0810.06016
[4] J.B. Hart and C. Tsinakis , Decompositions for relatively normal lattices , Trans. Amer. Math. Soc. 341 2 ( 1994 ), 519 - 548 . MR 1211409 | Zbl 0799.06019 · Zbl 0799.06019 · doi:10.2307/2154571
[5] M. Henriksen , J. Vermeer , R.G. Woods , Wallman covers of compact spaces , Dissertationes Mat. ( Rozprawy Mat. ) 280 ( 1989 ), 34 pp. MR 997373 | Zbl 0719.54033 · Zbl 0719.54033
[6] M. Mandelker , Relative annihilators in lattices , Duke Math. J. 37 ( 1970 ) 377 - 386 . Article | MR 256951 | Zbl 0206.29701 · Zbl 0206.29701 · doi:10.1215/S0012-7094-70-03748-8
[7] A. Monteiro , L’arithmetique des filtres et les espaces topologiques , De Segundo Symposium de Matematicas-Villavicencio ( Mendoza , Buenos Aires ), 1954 , pp. 129 - 162 . MR 74805 | Zbl 0058.38503 · Zbl 0058.38503
[8] A. Monteiro , L’arithmetique des filtres et les espaces topologiques, I, II , Notas Lógica Mat. ( 1974 ), 29 - 30 . Zbl 0318.06019 · Zbl 0318.06019
[9] H.A. Priestley , Representation of distributive lattices by means of ordered Stone spaces , Bull. London Math. Soc. 2 ( 1970 ), 186 - 190 . MR 265242 | Zbl 0201.01802 · Zbl 0201.01802 · doi:10.1112/blms/2.2.186
[10] H.A. Priestley , Ordered topological spaces and the representation of distributive lattices , Proc. London Math. Soc. 324 ( 1972 ), 507 - 530 . MR 300949 | Zbl 0323.06011 · Zbl 0323.06011 · doi:10.1112/plms/s3-24.3.507
[11] J.T. Snodgrass and C. Tsinakis , Finite-valued algebraic lattices , Algebra Universalis 30 ( 1993 ), 311 - 318 . MR 1225870 | Zbl 0806.06011 · Zbl 0806.06011 · doi:10.1007/BF01190439
[12] J.T. Snodgrass and C. Tsinakis , The finite basis theorem for relatively normal lattices , Algebra Universalis 33 ( 1995 ), 40 - 67 . MR 1303631 | Zbl 0819.06009 · Zbl 0819.06009 · doi:10.1007/BF01190765
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.