×

zbMATH — the first resource for mathematics

A dimension formula for Ekedahl-Oort strata. (English) Zbl 1062.14033
To an abelian variety \(X\) over a field \(k\) of characteristic \(p\) one can associate invariants such as the \(p\)-rank or the isogeny class of its \(p\)-divisible group, and such invariants determine stratifications of the moduli space \(\mathcal A_g\). The Ekedahl-Oort stratification is defined by declaring that two points of \(\mathcal A_g (k)\) are in the same stratum if and only if the associated group schemes \(X[p]\) are isomorphic over \(\overline{k}\). Such stratifications can be extended to other Shimura varieties.
Let \(G\) be a connected reductive group associated to the given moduli problem, and let \(\mathbb X\) be a conjugacy class of parabolic subgroups of \(G\). Let \(W_G\) be the Weyl group of \(G\), and let \(W_\mathbb X\) be the subgroup of \(W_G\) associated to \(\mathbb X\). Then there is a generalized Ekedahl-Oort stratification on good reductions \(\mathcal A_0\) of PEL moduli spaces of the form \(\mathcal A_0 = \coprod_{w \in W_\mathbb X \backslash W_G} \mathcal A_0 (w)\). Note that, given a fixed set \(S \subset W_G\) of reflections, each coset \(w \in W_\mathbb X \backslash W_G\) has a distinguished representative \(\dot{w}\).
In this paper the author proves that the irreducible components of \(\mathcal A_0 (w)\) all have dimension equal to the length \(\ell (\dot{w})\) of \(\dot{w}\) if \(\mathcal A_0 (w) \neq 0\).

MSC:
14G35 Modular and Shimura varieties
11G15 Complex multiplication and moduli of abelian varieties
14L15 Group schemes
PDF BibTeX XML Cite
Full Text: DOI arXiv Numdam EuDML
References:
[1] Théorie de Dieudonné sur un anneau de valuation parfait, Ann. Scient. Éc. Norm. Sup (4), 13, 225-268, (1980) · Zbl 0441.14012
[2] Groupes et algèbres de Lie, Chap. 4-5-6, (1981), Masson, Paris · Zbl 0483.22001
[3] Purity of the stratification by Newton polygons, J. A.M.S, 13, 209-241, (2000) · Zbl 0954.14007
[4] Groupes \(p\)-divisibles sur LES corps locaux, Astérisque, 47-48, (1977) · Zbl 0377.14009
[5] Stratifications of Hilbert modular varieties, J. Alg. Geom, 9, 111-154, (2000) · Zbl 0973.14010
[6] Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck), Séminaire sur les pinceaux arithmétiques: la conjecture de Mordell, 127, 151-198, (1985) · Zbl 1182.14050
[7] Isocrystals with additional structure, Compos. Math, 56, 201-220, (1985) · Zbl 0597.20038
[8] Isocrystals with additional structure. II., Compos. Math., 109, 3, 255-339, (1997) · Zbl 0966.20022
[9] Points on some Shimura varieties over finite fields, J. A.M.S, 5, 373-444, (1992) · Zbl 0796.14014
[10] Kommutative algebraische \(p\)-Gruppen (mit Anwendungen auf \(p\)-divisible Gruppen und abelsche Varietäten), (1975)
[11] Group schemes with additional structures and Weyl group cosets, Moduli of Abelian Varieties, 195, 255-298, (2001), Birkhäuser, Basel · Zbl 1084.14523
[12] Serre-Tate theory for moduli spaces of PEL type, Ann. Scient. Éc. Norm. Sup, 4e série, 37, 223-269, (2004) · Zbl 1107.11028
[13] Discrete invariants of varieties in positive characteristic, (2003) · Zbl 1084.14023
[14] Newton polygons and formal groups: conjectures by Manin and Grothendieck, Ann. Math, 152, 183-206, (2000) · Zbl 0991.14016
[15] A stratificiation of a moduli space of abelian varieties, Moduli of Abelian Varieties, 195, 345-416, (2001), Birkhäuser, Basel · Zbl 1052.14047
[16] Newton polygon strata in the moduli space of abelian varieties, Moduli of Abelian Varieties, 195, 417-440, (2001), Birkhäuser, Basel · Zbl 1086.14037
[17] On the Newton stratification, Astérisque, 290, (2003) · Zbl 1159.14304
[18] On the classification and specialization of \(F\)-isocrystals with additional structure, Compos. Math, 103, 153-181, (1996) · Zbl 0874.14008
[19] The dimension of Oort strata of Shimura varieties of PEL-type, Moduli of Abelian Varieties, 195, 441-471, (2001), Birkhäuser, Basel · Zbl 1052.14026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.