zbMATH — the first resource for mathematics

Canonical subgroups and p-adic vanishing cycles for abelian varieties. (Sous-groupes canoniques et cycles évanescents \(p\)-adiques pour les variétés abéliennes.) (French) Zbl 1062.14057
Let \(k\) be an algebraically closed field of characteristic \(p>0\), \(W=W(k)\) its ring of Witt vectors and \(\sigma\) the endormorphism of Frobenius on \(k\) and \(W\). Let \(A\) be an ordinary \(k\)-abelian variety of dimension \(g\) and \(\mathfrak M\) the moduli space of formal deformations of \(A\) over \(W\)-artinian local algebras with residue field \(k\). It follows from Serre-Tate theory [N. Katz, in Surfaces algébriques, Lect. Notes Math. 868, 138–202 (1981; Zbl 0477.14007)] that there exists a canonical isomorphism of \(W\)-formal schemes \(\mathfrak M\overset{\cong}\longrightarrow\text{Hom}_{\mathbb Z_p}(T_pA(k)\otimes T_p\hat{A}(k),\hat{\mathbb G}_m)\), where \(\hat{A}\) is the dual abelian variety of \(A\) and \(T_p\) denotes the \(p\)-adic Tate module. B. Dwork showed in [appendix of P. Deligne, L. Illusie, in: Surfaces algébriques, Lect. Notes Math. 868, 80–137 (1981; Zbl 0537.14012)] that the structure of the formal toric group over \(\mathfrak M\) is imposed by a given \(W\)-morphism \(\Phi:\mathfrak M\to\mathfrak M^{(\sigma)}\) that lifts the Frobenius morphism.
In particular, the structure of the formal group of Serre-Tate is completely determined by the canonical lifting of Frobenius \(\Phi_{\text{can}}:\mathfrak M\to\mathfrak M^{(\sigma)}\). In this case Dwork conjectured that the canonical lifting is overconvergent (the problem of the excellent lifting). More precisely, let \(\mathcal X\) be a formal \(W\)-scheme topologically of finite type and \(\mathcal A\to\mathcal X\) a formal abelian scheme such that \(\mathcal A_k\to\mathcal X_k\) is a family of ordinary abelian varieties. Let \({}_p\mathcal A\) be the kernel of multiplication by \(p\), \({}_p\mathcal A^{\text{ét}}\) the greatest étale quotient and \({}_p\mathcal A^0\) the kernel of the natural morphism \({}_p\mathcal A\to{}_p\mathcal A^{\text{ét}}\). We suppose given a cartesian diagram \[ \begin{tikzcd} \mathcal A/{}_p\mathcal A^0\ar[r,"\Theta"]\ar[d] & \mathcal A\ar[d]\\ \mathcal X\ar[r,"\Phi" '] & \mathcal X \end{tikzcd} \] such that \(\Phi\) lifts \(\Phi_k\) and \(\Theta\) lifts the natural morphism \((\mathcal A/{}_p\mathcal A^0)_k=\mathcal A_k^{(\Phi_k)}\to\mathcal A_k\). This diagram exists for certain moduli spaces of abelian varieties. In this case, Dwork conjectured that \(\Phi\) is overconvergent. P. Deligne and B. Dwork [Publ. Math., Inst. Hautes Étud. Sci 37, 27–115 (1969; Zbl 0284.14008)] and N. Katz [in: Modular Forms in One Variable III, Lect. Notes Math 350, 69–190 (1973; Zbl 0271.10033)] proved this conjecture for families of elliptic curves. Later B. Dwork [Invent. Math. 12, 249–256 (1971; Zbl 0219.14014)] used this result to prove that the unit \(L\)-function of a universal family of ordinary Legendre elliptic curves admits meromorphic continuation to \(\mathbb C_p\).
In this paper the authors show the overconvergence for arbitrary dimension under the hypothesis that \(p\geq3\) and deduce from it an application to the study of certain unity \(L\)-functions. In order to state the main result of the paper, let us assume that \(K\) is a complete valued field of characteristic 0 with perfect residue field \(k\) of characteristic \(p>0\), let \(\mathcal O_K\) be its ring of integers and \(S=\text{Spec}(\mathcal O_K)\). Let \(A\) be an \(S\)-abelian scheme of relative dimension \(g\), \(S_1=\text{Spec}(\mathcal O_K/p\mathcal O_K)\), \(A_1=A\times_SS_1\) and \({}_pA\) the kernel of the multiplication by \(p\). Given a finite and flat \(S\)-group scheme \(G\), we define a canonical decreasing exhaustive filtration \((G_a,a\in\mathbb Q_{\geq0})\) by finite flat closed subgroup schemes. For each real number \(a\geq0\), let \(G^{a+}=\bigcup_{b>a}G^b\), where \(b\in\mathbb Q\).
The main result says the following. Suppose \(p\geq3\), denote by \(e\) the absolute ramification index of \(K\) and \(j=e/(p-1)\). Let \(A\) be an abelian \(S\)-scheme of relative dimension \(g\) such that the Hodge height of \(H^1(A_1,\mathcal O_{A_1})\) is strictly smaller than \(\inf\left( \frac1{p(p-1)},\frac{p-2}{(p-1)(2g(p-1)-p)}\right)\). Then the hole \({}_pA^{j+}\) of the canonical filtration of \({}_pA\) is finite and flat over \(S\) with rank \(p^g\). Furthermore, if \(A_k\) is ordinary, then \({}_pA^{j+}\) is the connected neutral component of \({}_pA\).
This theorem implies the conjecture of the excellent lifting of Dwork for the moduli spaces of abelian varieties. In the paper under review the authors treat the case of \(\mathfrak A_{g,N}\) which is the moduli space parametrizing abelian schemes of relative dimension \(g\) which are principally polarized and have a level \(N\)-structure. By D. Mumford [Geometric Invariant Theory (Springer-Verlag) (1965; Zbl 0147.39304)] this moduli problem is representable by a quasi-projective connected and smooth \(W\)-scheme. Its formal completion along the special fiber contains a formal open set \(Q\) which represents ordinary abelian varieties. By the universal property, \(Q\) comes equipped with a canonical Frobenius lifting \(Q_k\). The authors prove that this lifting is overconvergent.

14K10 Algebraic moduli of abelian varieties, classification
14K15 Arithmetic ground fields for abelian varieties
14F30 \(p\)-adic cohomology, crystalline cohomology
Full Text: DOI Numdam EuDML
[1] A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields, Am. J. Math., 124 (2002), 879–920. · Zbl 1084.11064
[2] A. Abbes and T. Saito, Ramification of local fields with imperfect residue fields II, Documenta Math., volume en l’honneur de K. Kato (2003), 5–72. · Zbl 1127.11349
[3] P. Berthelot, Cohomologie rigide et cohomologie rigide à supports propres, première partie, Prépublication 96–03 de Rennes (1996).
[4] P. Berthelot, Finitude et pureté cohomologique en cohomologie rigide, Invent. Math., 128 (1997), 329–377. · Zbl 0908.14005
[5] S. Bloch and K. Kato, p-adic étale cohomology, Publ. Math., Inst. Hautes Étud. Sci., 63 (1986), 107–152.
[6] S. Bosch, U. Güntzer, and R. Remmert, Non–Archimedean Analysis, A Series of Comprehensive Studies in Mathematics 261, Springer–Verlag (1984). · Zbl 0539.14017
[7] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Ergebnisse der Mathematik 21 (1990), Springer-Verlag. · Zbl 0705.14001
[8] S. Bosch and W. Lütkebohmert, Formal and rigid geometry, II. Flattening techniques, Math. Ann., 296 (1993), 403–429. · Zbl 0808.14018
[9] S. Bosch, W. Lütkebohmert, and M. Raynaud, Formal and rigid geometry, IV. The reduced fiber theorem, Invent. Math., 119 (1995), 361–398. · Zbl 0839.14014
[10] R. Coleman, Classical and overconvergent modular forms, Invent. Math., 124 (1996), 215–241. · Zbl 0851.11030
[11] R. Coleman, p-adic Banach spaces and families of modular forms, Invent. Math., 127 (1997), 417–479. · Zbl 0918.11026
[12] A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Publ. Math., Inst. Hautes Étud. Sci., 82 (1995), 5–96. · Zbl 0864.14009
[13] P. Deligne and L. Illusie, Cristaux ordinaires et coordonnées canoniques, avec Appendice de N. Katz, dans : Surface algébriques, éd. J. Giraud, L. Illusie, M. Raynaud, Lect. Notes Math., 868 (1981), 80–137.
[14] P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Lect. Notes Math., 349 (1973), 143–316.
[15] B. Dwork, p-adic cycles, Publ. Math., Inst. Hautes Étud. Sci., 37 (1969), 27–115.
[16] B. Dwork, On Hecke polynomials, Invent. Math., 12 (1971), 249–256. · Zbl 0219.14014
[17] R. Elkik, Solution d’équations à coefficients dans un anneau hensélien, Ann. Sci. Éc. Norm. Supér., IV. Sér., 6 (1973), 553–604. · Zbl 0327.14001
[18] G. Faltings and C.-L. Chai, Degeneration on abelian varieties, Ergebnisse der Mathematik 22 (1990), Springer-Verlag. · Zbl 0744.14031
[19] J.-M. Fontaine, Formes différentielles et Modules de Tate des variétés abéliennes sur les corps locaux, Invent. Math., 65 (1982), 379–409.
[20] J.-M. Fontaine and W. Messing, p-adic periods and p-adic étale cohomology, Cont. Math., 67 (1987), 179–207. · Zbl 0632.14016
[21] R. Hartshorne, Algebraic geometry, Springer-Verlag (1977). · Zbl 0367.14001
[22] K. Kato, Swan conductors for characters of degree one in the imperfect residue field case, Cont. Math., 83 (1989), 101–131. · Zbl 0716.12006
[23] K. Kato, On p-adic vanishing cycles (Application of ideas of Fontaine-Messing), Adv. Stud. Pure Math., 10 (1987), 207–251. · Zbl 0645.14009
[24] N. Katz, p-adic properties of modular schemes and modular forms, dans : Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lect. Notes Math., 350 (1973), 69–190.
[25] N. Katz, Serre-Tate local moduli, dans : Surface algébriques, éd. J. Giraud, L. Illusie, M. Raynaud, Lect. Notes Math., 868 (1981), 138–202.
[26] P. Monsky, Formal cohomology: III. Fixed point theorems, Ann. Math., 93 (1971), 315–343. · Zbl 0213.47501
[27] P. Monsky and G. Washnitzer, Formal cohomology: I, Ann. Math., 88 (1968), 181–217; Formal cohomology: II. The cohomology sequence of a pair, Ann. Math., 88 (1968) 218–238. · Zbl 0162.52504
[28] L. Moret-Bailly, Pinceaux de variétés abéliennes, Astérisque, 129 (1985).
[29] D. Mumford, Geometric invariant theory, Springer-Verlag (1965). · Zbl 0147.39304
[30] M. Raynaud, Schémas en groupes de type (p,...,p), Bull. Soc. Math. Fr., 102 (1974), 241–280.
[31] D. Wan, Higher rank case of Dwork’s conjecture, J. Am. Math. Soc., 13 (2000), 807–852. · Zbl 1086.11030
[32] D. Wan, Rank one case of Dwork’s conjecture, J. Am. Math. Soc., 13 (2000), 853–908. · Zbl 1086.11031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.