zbMATH — the first resource for mathematics

Distributive coset graphs of finite Coxeter groups. (English) Zbl 1062.20045
Summary: Let \(W\) be a finite Coxeter group, \(W_J\) a parabolic subgroup of \(W\) and \(X_J\) the set of distinguished coset representatives of \(W_J\) in \(W\) equipped with the induced weak Bruhat ordering of \(W\). All instances when \(X_J\) is a distributive lattice are known. In this note we present a short conceptual proof of this result.
20F55 Reflection and Coxeter groups (group-theoretic aspects)
05E15 Combinatorial aspects of groups and algebras (MSC2010)
06A07 Combinatorics of partially ordered sets
Full Text: DOI
[1] Azad H., Comm. Algebra 18 pp 551– (1990)
[2] Bergeron F., J. Algebraic Combin. 1 pp 23– (1992)
[3] A. Bj rner. Orderings of Coxeter groups. In Combinatorics and algebra (Boulder, Colo., 1983) (American Mathematical Society, 1984), pp. 175-195.
[4] N. Bourbaki.Groupes et algebres de Lie. Chapitres IV-VI (Hermann, 1968). · Zbl 0186.33001
[5] N. Bourbaki.Groupes et algebres de Lie.Chapitres VII-VIII (Hermann, 1975).
[6] M. Geck and G. Pfei er. Characters of finite Coxeter groups and Iwahori-Hecke algebras. (Oxford University Press, 2000).
[7] Proctor R. A., European J. Combin. 5 pp 331– (1984)
[8] Solomon L., J. Algebra 41 pp 255– (1976)
[9] R. P. Stanley. Enumerative combinatorics, vol.1 (Wadsworth Brooks/Cole Advanced Books Software, 1986). · Zbl 0608.05001
[10] Stembridge J. R., J. Algebraic Combin. 5 pp 353– (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.