An analysis of quantum Fokker-Planck models: a Wigner function approach. (English) Zbl 1062.35097

Summary: The analysis of dissipative transport equations within the framework of open quantum systems with Fokker-Planck-type scattering is carried out from the perspective of a Wigner function approach. In particular, the well-posedness of the self-consistent whole-space problem in 3D is analyzed: existence of solutions, uniqueness and asymptotic behavior in time, where we adopt the viewpoint of mild solutions in this paper. Also, the admissibility of a density matrix formulation in Lindblad form with Fokker-Planck dissipation mechanisms is discussed. We remark that our solution concept allows to carry out the analysis directly on the level of the kinetic equation instead of on the level of the density operator.


35Q40 PDEs in connection with quantum mechanics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
35S10 Initial value problems for PDEs with pseudodifferential operators
82C70 Transport processes in time-dependent statistical mechanics
Full Text: DOI EuDML


[1] Arnold, A.: Self-consistent relaxation-time models in quantum mechan- ics. Comm. Partial Differential Equations 21 (1996), no. 3-4, 473-506. · Zbl 0849.35113
[2] Arnold, A., Nier, F.: Numerical analysis of the deterministic particle method applied to the Wigner equation. Math. Comp. 58 (1992), 645-669. · Zbl 0763.65092
[3] Benatti, F. and Narnhofer, H.: Entropy behaviour under completely positive maps. Lett. Math. Phys. 15 (1988), 325-334. · Zbl 0645.60108
[4] Bonilla, L. L., Carrillo, J. A. and Soler, J.: Asymptotic behavior of an initial-boundary value problem for the Vlasov-Poisson-Fokker-Planck system. SIAM J. Appl. Math. 57 (1997), 1343-1372. · Zbl 0888.35018
[5] Bouchut, F.: Smoothing effect for the non-linear Vlasov-Poisson- Fokker-Planck system. J. Differential Equations 122 (1995), 225-238. · Zbl 0840.35053
[6] Bouchut, F. and Dolbeault, J.: On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials. Differential Integral Equations 8 (1995), 487-514. · Zbl 0830.35129
[7] Caldeira, A. O. and Leggett, A. J.: Path integral approach to quan- tum Brownian motion. Phys. A 121 (1983), 587-616. · Zbl 0585.60082
[8] Cañizo, J. A., López, J. L. and Nieto, J.: Global L1 theory and regu- larity for the 3D nonlinear Wigner-Poisson-Fokker-Planck system. J. Dif- ferential Equations 198 (2004), no. 2, 356-373. · Zbl 1039.35093
[9] Carpio, A.: Long-time behaviour for solutions of the Vlasov-Poisson- Fokker-Planck equation. Math. Methods Appl. Sci. 21 (1998), 985-1014. · Zbl 0911.35090
[10] Carrillo, J. A. and Soler, J.: On the Vlasov-Poisson-Fokker-Planck equations with measures in Morrey spaces as initial data. J. Math. Anal. Appl. 207 (1997), 475-495. · Zbl 0876.35085
[11] Carrillo, J. A., Soler, J. and Vázquez, J. L.: Asymptotic be- haviour and self-similarity for the three-dimensional Vlasov-Poisson- Fokker-Planck system. J. Funct. Anal. 141 (1996), 99-132. · Zbl 0873.35066
[12] Castella, F., Erdös, L., Frommlet, F. and Markowich, P. A.: Fokker-Planck equations as scaling limits of reversible quantum systems. J. Statist. Phys. 100 (2000), no. 3-4, 543-601. · Zbl 0988.82038
[13] Chebotarev, A. M. and Fagnola, F.: Sufficient conditions for conser- vativity of quantum dynamical semigroups. J. Funct. Anal. 118 (1993), 131-153. · Zbl 0801.46083
[14] Cottet, G. H. and Soler, J.: Three-dimensional Navier-Stokes equa- tions for singular filament initial data. J. Differential Equations 74 (1988), 234-253. · Zbl 0675.76072
[15] Davies, E. B.: Markovian master equations. Comm. Math. Phys. 39 (1974), 91-110. · Zbl 0294.60080
[16] Davies, E. B.: Quantum theory of open systems. Academic Press, New York, 1976. 813 · Zbl 0388.46044
[17] Dekker, H.: Quantization of the linearly damped harmonic oscillator. Phys. Rev. A (3) 16 (1977), no. 5, 2126-2134.
[18] Dekker, H. and Valsakumar, M. C.: A fundamental constraint on quantum mechanical diffusion coefficients. Phys. Lett. A 104 (1984), 67-71.
[19] Diósi, L.: Caldeira-Leggett master equation and medium temperatures. Phys. A 199 (1993), 517-526.
[20] Diósi, L.: On high-temperature Markovian equation for quantum Brown- ian motion. Europhys. Lett. 22 (1993), 1-3.
[21] Diósi, L., Gisin, N., Halliwell, J. and Percival, I. C.: Decoherent histories and quantum state diffusion. Phys. Rev. Lett. 74 (1995), no. 2, 203-207. · Zbl 1020.81545
[22] Frensley, W. R.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Modern Phys. 62 (1990), no. 3, 745-791.
[23] Gérard, P., Markowich, P. A., Mauser, N. J. and Poupaud, F.: Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. 50 (1997), 323-379. · Zbl 0881.35099
[24] Gruvin, H. L., Govindan, T. R., Kreskovsky, J. P. and Stroscio, M. A.: Transport via the Liouville equation and moments of quantum dis- tribution functions. Solid State Electr. 36 (1993), 1697-1709.
[25] Horst, E. and Hunze, R.: Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation. Math. Methods Appl. Sci. 6 (1984), 262-279. · Zbl 0556.35022
[26] Lindblad, G.: On the generators of quantum dynamical semigroups. Comm. Math. Phys. 48 (1976), 119-130. · Zbl 0343.47031
[27] Lions, P. L. and Paul, T.: Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9 (1993), 553-618. · Zbl 0801.35117
[28] Markowich, P. A.: On the equivalence of the Schrödinger and the quan- tum Liouville equations. Math. Methods Appl. Sci. 11 (1989), 459-469. · Zbl 0696.47042
[29] Markowich, P. A. and Mauser, N. J.: The classical limit of a self- consistent quantum-Vlasov equation in 3D. Math. Models Methods Appl. Sci. 3 (1993), no. 1, 109-124. · Zbl 0772.35061
[30] Markowich, P. A., Ringhofer, C. A. and Schmeiser, C.: Semicon- ductor Equations. Springer-Verlag, Vienna, 1990. · Zbl 0765.35001
[31] Ono, K. and Strauss, W. A.: Regular solutions of the Vlasov-Poisson- Fokker-Planck system. Discrete Contin. Dynam. Systems 6 (200), 751-772. · Zbl 1034.82058
[32] Pazy, A.: Semigroups of linear operators and applications to partial dif- ferential equations. Springer, 2nd edition, 1992.
[33] Reed, M. and Simon, B.: Methods of modern mathematical physics II. Fourier Analysis, self-adjointness. Academic Press, 6th edition, 1986. · Zbl 0308.47002
[34] Risken, H.: The Fokker-Planck equation. Methods of solution and appli- cations. Springer Series in Synergetics 18. Springer-Verlag, 2nd. ed., 1989. · Zbl 0665.60084
[35] Stein, E. M.: Singular integrals and differentiability properties of func- tions. Princeton University Press, Princeton, New Jersey, 1970. · Zbl 0207.13501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.