On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. (English) Zbl 1062.35100

The author studies the eigenfunctions \(u(x)= \psi(x,\sigma)\); \(x\in \mathbb R^3)^N\), \(\sigma\in \{-1/2,1/2\}^N\) (spin) of the Hamilton operator \[ H=- \sum_{i=1\sim N}\Delta_i/2- \sum_{i=1\sim N}\sum_{\nu= 1\sim K}Z_\nu/|x_i- a_\nu|+ \sum_{i,j= 1\sim N,i\neq j}(1/2)/|x_i- x_j|, \] under the condition \[ \psi(Px, P\sigma)= \text{sign}(P)\psi(x, \sigma),\quad P\sigma= \sigma. \] Let \(\emptyset\neq I\subseteq \{1,2,\dots, N\}\), \(P\) an exchange of two indices in \(I\), and \(D_I(\subset D((\mathbb R^3)^N))\) be the space of antisymmetric functions under \(\forall P\) in \(I\). Let \(I^*\) be the set of the mappings \(\alpha: I\to \{1,2,3\}\), \(L_\alpha= \prod_{i\in I}\partial/\partial x_{i,\alpha(i)}\), \(\alpha\in I^*\), and \[ \| u\|_{I,s}= \Biggl(\| u\|^2_s+ \sum_{\alpha\in I^*}\| L_\alpha u\|^2_s\Biggr)^{1/2}, \] \(s=-1\), \(0\), or \(1\). The completion of \(D_I\) under \(\|\cdot\|_{I,s}\) (in \(H^s\)) is denoted as \(X_I^s\) \((H_I^s)\).
Result: (1) Let \(\chi= v+(-1)^{|I|}\prod_{i\in I}\Delta_i v\). If \(\mu> \mu_0(N)\), the solution \(u\in H^1_I\) of the equation \(((H+ \mu I) u,\chi)= (f,\chi)\), \(\chi\in H^1_I\) is contained in \(X^1_I\) for all \(f\in X^{-1}_I\), \(\| u\|_{I,1}\leq 4\| f\|_{I,-1}\). That is, \(\partial(L_\alpha u)/\partial x_{i,j}\in L^2\) (\(i= 1,2,\dots, N\), \(j= 1,2,3\)) for \(\forall\alpha\in I^*\) (regularity). (2) Let \((P_k u)(x)= (2\pi)^{-3N/2} \int \chi_k(\omega)(Fu)(\omega)\exp(i\omega\cdot x)\,d\omega\), \(\chi_k(\omega)= 1\), if \(\prod_{i= 1\sim N}|\omega_i|< 2^k\); \(=0\), otherwise. The error estimate \(\| u- P_k u\|_1\leq 2^{-k/2}|||u|||_1\) is given.


35Q40 PDEs in connection with quantum mechanics
81V10 Electromagnetic interaction; quantum electrodynamics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
35B65 Smoothness and regularity of solutions to PDEs
41A63 Multidimensional problems
46E20 Hilbert spaces of continuous, differentiable or analytic functions
Full Text: DOI


[1] Babenko, K.I.: Approximation by trigonometric polynomials in a certain class of periodic functions of several variables. Soviet Math. Dokl. 1, 672-675 (1960) · Zbl 0102.05301
[2] Bungartz, H.J.: Finite Elements of Higher Order on Sparse Grids, Habilitationsschrift, Fakultät für Informatik, TU München. Aachen: Shaker Verlag 1998
[3] DeVore, R.A., Konyagin, S.V., Temlyakov, V.N.: Hyperbolic wavelet approximation. Constr. Approx. 14, 1-26 (1998) · Zbl 0895.41016
[4] Flad, H.J., Hackbusch, W., Kolb, D., Schneider, R.: Wavelet approximation of correlated wave functions. I. Basics. J. Chem. Phys. 116, 9461-9657 (2002)
[5] Fournais, S., Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Østergard Sørensen, T.: The electron density is smooth away from the nuclei. Commun. Math. Phys. 228, 401-415 (2002) · Zbl 1005.81095
[6] Garcke, J., Griebel, M.: On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. J. Comput. Phys. 165, 694-716 (2000) · Zbl 0979.65101
[7] Griebel, M., Knapek, S.: Optimized tensor-product approximation spaces. Constr. Approx. 16, 525-540 (2000) · Zbl 0969.65107
[8] Hackbusch, W.: The efficient computation of certain determinants arising in the treatment of Schrödinger?s equation. Computing 67, 35-56 (2000) · Zbl 0997.65075
[9] Helgaker, T., Jørgensen, P., Olsen, J.: Molecular electronic structure theory. New York: John Wiley and Sons, 2001
[10] Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Østergard Sørensen, T.: Electron wavefunctions and densities for atoms. Ann. Henri Poincaré 2, 77-100 (2001) · Zbl 0985.81133
[11] Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Stremnitzer, H.: Local properties of coulombic wave functions. Commun. Math. Phys. 163, 185-215 (1994) · Zbl 0812.35105
[12] Hunziker, W., Sigal, I. M.: The quantum N-body problem. J. Math. Phys. 41, 3448-3510 (2000) · Zbl 0981.81026
[13] Luo, H., Kolb, D., Flad, H.J, Hackbusch, W., Koprucki, T.: Wavelet approximation of correlated wave functions. II. Hyperbolic wavelets and adaptive approximation schemes. J. Chem. Phys. 117, 3625-3638 (2002)
[14] Kato, T.: Fundamental properties of Hamiltonian operators of Schrödinger type. Trans. Am. Math. Soc. 70, 195-221 (1951) · Zbl 0044.42701
[15] Kato, T.: On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure and Appl. Math. 10, 151-177 (1957) · Zbl 0077.20904
[16] Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. Oxford: Oxford University Press, 1994
[17] Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV: Analysis of Operators. San Diego: Academic Press, 1978 · Zbl 0401.47001
[18] Simon, B.: Schrödinger operators in the twentieth century. J. Math. Phys. 41, 3523-3555 (2000) · Zbl 0981.81025
[19] Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4, 240-243 (1963) · Zbl 0202.39901
[20] Szabo, A., Ostlund, N.S.: Modern Quantum Chemistry, Introduction to Advanced Electronic Structure Theory. New York: Dover Publications, 1996
[21] von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Berlin: Springer-Verlag, 1932 · JFM 58.0929.06
[22] Yserentant, H.: On the electronic Schrödinger equation. Lecture Notes, Universität Tübingen 2003; accessible via http://na.uni-tuebingen.de · Zbl 1062.35100
[23] Zenger, C.: Sparse grids. In: W. Hackbusch (ed.) Parallel Algorithms for Partial Differential Equations. Proceedings, Kiel 1990, pp. 241-251. Notes on Numerical Fluid Mechanics vol. 31, Braunschweig Wiesbaden: Vieweg, 1991 · Zbl 0763.65091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.