The Urysohn universal metric space is homeomorphic to a Hilbert space. (English) Zbl 1062.54036

Call a separable metric space \(X\) {universal} if it contains an isometric copy of every separable metric space, and {ultrahomogeneous} if every isometry between two finite metric subspaces of \(X\) can be extended to an isometry of \(X\) onto itself. The Urysohn space \(U\) is the unique (up to isometry) universal ultrahomogeneous space.
In the first part of this paper some equivalent definitions of \(U\), as well as recent results concerning this space, are briefly surveyed. In the second part the author proves that \(U\) is homeomorphic to the Hilbert space \(\ell^2\) (and hence, to any separable infinite-dimensional Fréchet space).
The proof is based on the fact that \(U\), as shown by S. A. Bogatyi [Russ. Math. Surv. 55, No. 2, 332–333 (2000; Zbl 0999.54022); translation from Usp. Mat. Nauk 55, No. 2, 131–132 (2000)] is compactly injective, that is, every continuous map from a compact metric space \(K\) to \(U\) can be extended over any compact metric superspace of \(K\); and on H. Toruńczyk’s characterization of \(\ell^2\) as the unique (up to homeomorphisms) separable metrizable AR space with the discrete approximation property [Fundam. Math. 111, 247–262 (1981; Zbl 0468.57015)].


54F65 Topological characterizations of particular spaces
54C55 Absolute neighborhood extensor, absolute extensor, absolute neighborhood retract (ANR), absolute retract spaces (general properties)
54E50 Complete metric spaces
54E35 Metric spaces, metrizability
Full Text: DOI arXiv


[1] Bogatyı̆, S.A., Compact homogeneity of Uryson’s universal metric space, Uspekhi mat. nauk, Russian math. surveys, 55, 2, 332-333, (2000), (in Russian); English translation in · Zbl 0999.54022
[2] Bogatyı̆, S.A., Metrically homogeneous spaces, Uspekhi mat. nauk, Russian math. surveys, 57, 2, 221-240, (2002), (in Russian); English translation in · Zbl 1063.54017
[3] Katětov, M., On universal metric spaces, (), 323-330 · Zbl 0642.54021
[4] Kechris, A.S.; Pestov, V.G.; Todorcevic, S., Fraı̈ssé limits, Ramsey theory, and topological dynamics of automorphism groups · Zbl 1084.54014
[5] van Mill, J., Infinite-dimensional topology: prerequisites and introduction, (1989), North-Holland Amsterdam · Zbl 0663.57001
[6] Bestvina, M.; Bowers, P.; Mogilski, J.; Walsh, J., Characterization of Hilbert space manifolds revisited, Topology appl., 24, 53-69, (1986) · Zbl 0613.58003
[7] Pestov, V., Ramsey – milman phenomenon, Urysohn metric spaces, and extremely amenable groups, Israel J. math., 127, 317-357, (2002) · Zbl 1007.43001
[8] Toruńczyk, H., Characterizing Hilbert space topology, Fund. math., 111, 3, 247-262, (1981) · Zbl 0468.57015
[9] Urysohn, P., Sur un espace métrique universel, C. R. acad. sci. Paris, 180, 803-806, (1925) · JFM 51.0452.03
[10] Urysohn, P., Sur un espace métrique universel, Bull. sci. math., 51, 43-64, (1927), and 74-90 · JFM 53.0556.01
[11] Uspenskij, V., On the group of isometries of the Urysohn universal metric space, Comment. math. univ. carolin., 31, 1, 181-182, (1990) · Zbl 0699.54011
[12] Uspenskij, V., On subgroups of minimal topological groups · Zbl 1166.22002
[13] Uspenskij, V., Compactifications of topological groups, in: P. Simon (Ed.), Proceedings of the Ninth Prague Topological Symposium, Prague, August 19-25, 2001, published April 2002 by Topology Atlas (electronic publication), pp. 331-346
[14] Vershik, A.M.; Vershik, A.M., The universal Urysohn space, Gromov’s metric triples, and random metrics on the series of natural numbers, Uspekhi matem. nauk, Russian math. surveys, Uspekhi mat. nauk, Russian math. surveys, 56, 5, 1015-928, (2001), translation in · Zbl 1059.53038
[15] Vershik, A.M., Random metric spaces and the universal Urysohn space, () · Zbl 1146.54309
[16] Vershik, A.M., Random metric space is universal Urysohn space, Doklady RAN, 387, 6, 1-4, (2002) · Zbl 1146.54309
[17] Vershik, A.M., Random and universal metric spaces · Zbl 1065.60005
[18] Vershik, A.M., Distance matrices, random metrics and Urysohn space · Zbl 1005.53036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.