Central limit theorems for iterated random Lipschitz mappings. (English) Zbl 1062.60017

Let \(M\) be a noncompact metric space such that every closed ball is compact, and let \(G\) be a semigroup of Lipschitz mappings of \(M\). Denote by \((Y_n)_{n\geq 1}\) a sequence of independent \(G\)-valued, identically distributed random variables, and by \(Z\) an \(M\)-valued random variable which is independent of \((Y_n)\). This paper considers the Markov chain \((Z_n)_{n\geq 0}\) with state space \(M\): \(Z_0=Z\) and \(Z_{n+1}=Y_{n+1}Z_n\) for all \(n\geq 0\). Let \(\xi\) be a real-valued function on \(G\times M\). This paper deals with the central and local central limit theorems of the random variables \((\xi(Y_n, Z_{n-1}))_{n\geq 1}\). The convergence rates are also presented. The main hypothesis is the contraction in mean for the action on \(M\) of the mappings \((Y_n)\). The main method used in the study is a quasi-compactness property of the transition probability of the Markov chain mentioned above, and a special perturbation theorem.


60F05 Central limit and other weak theorems
60J05 Discrete-time Markov processes on general state spaces
Full Text: DOI arXiv


[1] Bapat, R. B. and Raghavan, T. E. S. (1997). Nonnegative Matrices and Applications. Cambridge Univ. Press. · Zbl 0879.15015
[2] Benda, M. (1998). A central limit theorem for contractive stochastic dynamical systems. J. Appl. Probab. 35 200–205. · Zbl 0906.60051
[3] Bhattacharya, R. and Majumdar, M. (2004). Economic Theory .
[4] Bolthausen, E. (1982). The Berry–Esseén theorem for strongly mixing Harris recurrent Markov chains. Z. Wahrsch. Verw. Gebiete 60 283–289. · Zbl 0476.60022
[5] Cuny, C. (2004). Fonctions harmoniques bornées sur les groupes de Lie. Marches aléatoires et problèmes connexes. Ann. Inst. H. Poincaré Probab. Statist. · Zbl 1076.22009
[6] Diaconis, P. and Freedman, D. (1999). Iterated random functions. SIAM Rev. 41 45–76. · Zbl 0926.60056
[7] Dudley, R. M. (1989). Real Analysis and Probability . Wadsworth, Pacific Grove, CA. · Zbl 0686.60001
[8] Duflo, M. (1997). Random Iterative Models . Applications of Mathematics . Springer, Berlin. · Zbl 0868.62069
[9] Dunford, N. and Schwartz, J.-T. (1958). Linear Operators , Part I. Wiley, New York. · Zbl 0635.47001
[10] Hennion, H. (1991). Dérivabilité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes à coefficients positifs. Ann. Inst. H. Poincaré Probab. Statist. 27 27–59. · Zbl 0724.60009
[11] Hennion, H. (1993). Sur un théorème spectral et son application aux noyaux lipchitziens. Proc. Amer. Math. Soc. 118 627–634. · Zbl 0772.60049
[12] Hennion, H. (1997). Limit theorems for products of positive random matrices. Ann. Probab. 25 1545–1587. · Zbl 0903.60027
[13] Hennion, H. and Hervé, L. (2001). Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness . Lecture Notes in Math. 1766 . Springer, Berlin. · Zbl 0983.60005
[14] Keller, G. and Liverani, C. (1999). Stability of the spectrum for transfer operators. Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (4) 28 141–152. · Zbl 0956.37003
[15] Le Page, E. (1983). Théorèmes de renouvellement pour les produits de matrices aléatoires. Equations aux différences aléatoires. In Séminaires de Probabilites Rennes. Univ. Rennes I.
[16] Le Page, E. (1989). Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications. Ann. Inst. H. Poincaré Probab. Statist. 25 109–142. · Zbl 0679.60010
[17] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability . Springer, Berlin. · Zbl 0925.60001
[18] Milhaud, X. and Raugi, A. (1989). Etude de l’estimateur du maximum de vraisemblance dans le cas d’un processus auto-régressif: Convergence, normalité asymptotique, vitesse de convergence. Ann. Inst. H. Poincaré Probab. Statist. 25 383–428. · Zbl 0714.60014
[19] Nagaev, S. V. (1957). Some limit theorems for stationary Markov chains. Theory Probab. Appl. 11 378–406.
[20] Peigné, M. (1993). Iterated function schemes and spectral decomposition of the associated Markov operator. In Séminaires de Probabilité Rennes. Univ. Rennes I.
[21] Pollicott, M. (2001). Contraction in mean and transfer operators. Dynam. Systems 16 97–106. · Zbl 0989.28008
[22] Wu, W.-B. and Woodroofe, M. (2000). A central limit theorem for iterated random functions. J. Appl. Probab. 37 748–755. · Zbl 0969.60032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.