zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An algorithmic approach to prox-regular variational inequalities. (English) Zbl 1062.65071
The author introduces a prox-gradient method for solving the nonconvex variational inequality problem and shows that the prox-regularity is enough to guarantee its local linear convergence. The main result of the paper can be considered as an improvement and a significant extension of some known results. The technique of the proof of the main result is very interesting.

65K10Optimization techniques (numerical methods)
49J40Variational methods including variational inequalities
Full Text: DOI
[1] Cottle, R. W.; Giannessi, F.; Lions, J. L.: Variational inequalities and complementarity problems: theory and applications. (1980)
[2] Giannessi, F.; Maugeri, A.: Variational inequalities and network equilibrium problems. (1995) · Zbl 0834.00044
[3] Bounkhel, M.; Tadji, L.; Hamdi, A.: Iterative schemes to solve nonconvex variational problems. J. inequal. Pure appl. Math. 4, No. 1 (2003) · Zbl 1045.58014
[4] Kaplan, A.; Tichatschke, R.: Proximal point methods and nonconvex optimiztion. J. global optim. 13, 389-406 (1998) · Zbl 0916.90224
[5] B. Lemaire, Quelques résultats récents sur l’algorithme proximal, Séminaire d’analyse Numérique Toulouse, 1990
[6] Pennaen, T.: Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math. oper. Res. 27, 170-191 (2002)
[7] Spingarn, J. E.: Submonotone mappings and the proximal point algorithm. J. numer. Funct. anal. Optim. 4, 123-150 (1981) · Zbl 0495.49025
[8] Poliquin, R. A.; Rockafellar, R. T.: Prox-regular functions in variational analysis. Trans. am. Math. soc. 248, No. 5, 1805-1838 (1996) · Zbl 0861.49015
[9] Rockafellar, R. T.; Wets, R. J. -B: Variational analysis. (1998)
[10] Moudafi, A.; Noor, M. Aslam: New convergence results for iterative methods for set-valued mixed variational inequalities. J. math. Inequal. appl. 3, 223-232 (2000) · Zbl 0949.49009