zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Comparison of homotopy perturbation method and homotopy analysis method. (English) Zbl 1062.65074
Summary: Comparison of homotopy perturbation method (HPM) and homotopy analysis method is made,revealing that the former is more powerful than the later. Furthermore, the HPM is further developed in this paper by applying the modern perturbation methods.

MSC:
65L05Initial value problems for ODE (numerical methods)
34A34Nonlinear ODE and systems, general
65H20Global numerical methods for nonlinear algebraic equations, including homotopy approaches
WorldCat.org
Full Text: DOI
References:
[1] Liao, S. J.: A second-order approximate analytical solution of a simple pendulum by the process analysis method. ASME J. Appl. mech. 59, 970-975 (1992) · Zbl 0769.70017
[2] Liao, S. J.: A new kind of nonlinear analytical method based on homotopy technology (1). J. Shanghai mech. 15, No. 2, 28-33 (1994)
[3] Liao, S. J.: An approximate solution technique not depending on small parameters: a special example. Int. J. Non-linear mech. 30, No. 3, 371-380 (1995) · Zbl 0837.76073
[4] Liao, S. J.: A new kind of nonlinear analytical method based on homotopy technology (2). J. Shanghai mech. 16, No. 3, 129-137 (1995)
[5] Liao, S. J.: A kind of approximate solution technique which does not depend upon small parameters----II: an application in fluid mechanics. Int. J. Non-linear mech. 32, No. 5, 815-822 (1997) · Zbl 1031.76542
[6] Liao, S. J.: Homotopy analysis method: A kind of nonlinear analytical technique not depending on small parameters. J. Shanghai mech. 18, No. 3, 196-200 (1997)
[7] Liao, S. J.: Homotopy analysis method: a new analytic method for nonlinear problems. Appl. math. Mech. (English-ed.) 19, No. 10, 957-962 (1998) · Zbl 1126.34311
[8] S.J. Liao, Homotopy analysis method: a new analytical method for nonlinear problems without small parameters, in: The 3rd International Conference on Nonlinear Mechanics, Shanghai, 1998, pp. 829--833
[9] Liao, S. J.: An explicit, totally analytic solution of laminar viscous flow over a semi-infinite flat plate. Commun. nonlinear sci. Numer. simulat. 3, No. 2, 53-57 (1998) · Zbl 0922.34012
[10] Liao, S. J.: An explicit, totally analytic approximate solution for Blasius viscous flow problem. Int. J. Non-linear mech. 34, 759-778 (1999) · Zbl 05137896
[11] Liao, S. J.: A uniformly valid analytic solution of two dimensional viscous flow over a semi-infinite plat plate. J. fluid mech. 385, 101-128 (1999) · Zbl 0931.76017
[12] Liao, S. J.: A non-iterative numerical approach for 2-D viscous flow problems governed by the Falkner--Skan equation. Int. J. Numer. methods fluids 35, No. 5, 495-518 (2001) · Zbl 0990.76068
[13] Hillermeier, C.: Generalized homotopy approach to multiobjective optimization. Int. J. Optim. theory appl. 110, No. 3, 557-583 (2001) · Zbl 1064.90041
[14] He, J. -H.: An approximate solution technique depending upon an artificial parameter. Commun. nonlinear sci. Numer. simulat. 3, No. 2, 92-97 (1998) · Zbl 0921.35009
[15] He, J. -H.: Newton-like iteration method for solving algebraic equations. Commun. nonlinear sci. Numer. simulat. 3, No. 2, 106-109 (1998) · Zbl 0918.65034
[16] He, J. -H.: Homotopy perturbation technique. Comput. methods appl. Mech. engng. 178, No. 3/4, 257-262 (1999) · Zbl 0956.70017
[17] He, J. -H.: A coupling method of homotopy technique and perturbation technique for nonlinear problems. Int. J. Nonlinear mech. 35, No. 1, 37-43 (2000) · Zbl 1068.74618
[18] Mallil, E.; Lahmam, H.; Damil, N.; Potier-Ferry, M.: An iterative process based on homotopy and perturbation techniques. Comput. methods appl. Mech. engng. 190, 1845-1858 (2000) · Zbl 1004.74079
[19] J.-M. Cadou, N. Moustaghfir, E.H. Mallil, N. Damil, M. Potier-Ferry, Linear iterative solvers based on perturbation techniques, C.R. Acad. Sci. Paris, 2001, T.329, Serie II b: 457--462
[20] Elhage-Hussein, A.; Potier-Ferry, M.; Damil, N.: A numerical continuation method based on Padé approximants. Int. J. Solids struct. 37, 6981-7001 (2000) · Zbl 0980.74021
[21] R.E.L. Mokhtari, J.-M. Cadou, M. Potier-Ferry, Une approche multigrille basee sur les techniques d’homotopie et de perturbation pour la resolution de problems d’elasticite lineare, XVeme Congres Francais de Mecanique, Nancy, 3--7 Septembre, 2001, pp. 1--6
[22] Jegen, M. D.; Everett, M. E.; Schultz, A.: Using homotopy to invert geophysical data. Geophysics 66, No. 6, 1749-1760 (2001)
[23] G.-L. Liu, New research directions in singular perturbation theory: artificial parameter approach and inverse-perturbation technique, in: C. Cheng et al. (Ed.), Modern Mathematics and Mechanics (MMM)-VII, Shanghai University Press, Shanghai, 1997, pp. 47--53 (in Chinese)
[24] Damil, N.; Potier-Ferry, M.; Najah, A.; Chari, R.; Lahmam, H.: An iterative method based upon Padé approximants. Commun. numer. Methods engng. 15, No. 10, 701-708 (1999) · Zbl 0943.65065
[25] Bender, C. M.; Pinsky, K. S.; Simmons, L. M.: A new perturbative approach to nonlinear problems. J. math. Phys. 30, No. 7, 1447-1455 (1989) · Zbl 0684.34008
[26] Andrianov, I.; Awrejcewicz, J.: Construction of periodic solution to partial differential equations with nonlinear boundary conditions. Int. J. Nonlinear sci. Numer. simulat. 1, No. 4, 327-332 (2000) · Zbl 0977.35031
[27] He, J. H.: A note on delta--perturbation method. Appl. math. Mech. 23, No. 6, 558-562 (2002)
[28] He, J. H.: A review on some new recently developed nonlinear analytical techniques. Int. J. Nonlinear sci. Numer. simulat. 1, No. 1, 51-70 (2000) · Zbl 0966.65056
[29] He, J. -H.: Modified Lindstedt--Poincarè methods for some strongly nonlinear oscillations. Part I: Expansion of a constant. Int. J. Non-linear mech. 37, No. 2, 309-314 (2002) · Zbl 1116.34320
[30] He, J. -H.: Modified Lindstedt--Poincarè methods for some strongly nonlinear oscillations. Part II: a new transformation. Int. J. Non-linear mech. 37, No. 2, 315-320 (2002) · Zbl 1116.34321
[31] He, J. -H.: Modified Lindstedt--Poincarè methods for some strongly nonlinear oscillations. Part III: Double series expansion. Int. J. Non-linear sci. Numer. simulat. 2, No. 4, 317-320 (2001) · Zbl 1072.34507
[32] Nayfeh, A. H.: Introduction to perturbation techniques. (1981) · Zbl 0449.34001
[33] He, J. H.: Modified straightforward expansion. Meccanica 34, No. 4, 287-289 (1999) · Zbl 1002.70019
[34] Wazwaz, A. -M.: A comparison between Adomian decomposition method and Taylor series method in the series solutions. Appl. math. Comput. 97, 37-44 (1998) · Zbl 0943.65084
[35] Wang, Z. K.; Gao, T. A.: An introduction to homotopy methods. (1990)
[36] He, J. H.: Approximate analytical solution of Blasius’s equation. Commun. nonlinear sci. Numer. simulat. 3, No. 4, 206-263 (1998)
[37] Howarth, L.: On the solution of the laminar boundary layer equation. Proc. R. Soc. lond. A 164, 547-579 (1938) · Zbl 64.1452.01