zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method. (English) Zbl 1062.65143
Summary: Using a parametric form of fuzzy numbers we convert a linear fuzzy Fredholm integral equation of the second kind to a linear system of integral equations of the second kind in the crisp case. We use the Adomian method and find an approximate solution of this system and hence obtain an approximation for the fuzzy solution of the linear fuzzy Fredholm integral equation of the second kind. We apply the method to some examples.

MSC:
65R20Integral equations (numerical methods)
45B05Fredholm integral equations
45F05Systems of nonsingular linear integral equations
26E50Fuzzy real analysis
WorldCat.org
Full Text: DOI
References:
[1] Adomian, G.: A review of the decomposition method in applied mathematics. J. math. Anal. appl 135, 501-544 (1988) · Zbl 0671.34053
[2] Adomian, G.: Solving frontier problems of physics. The decomposition method. (1994) · Zbl 0802.65122
[3] Badard, R.: Fixed point theorems for fuzzy numbers. Fuzzy sets systems 13, 291-302 (1984) · Zbl 0551.54005
[4] Buckley, J. J.: Fuzzy eigenvalues and input--output analysis. Fuzzy sets systems 34, 187-195 (1990) · Zbl 0687.90021
[5] Chang, S. S. L.; Zadeh, L.: On fuzzy mapping and control. IEEE trans. Systems man cybernet 2, 30-34 (1972) · Zbl 0305.94001
[6] Wu, C.; Ma, M.: On the integrals, series and integral equations of fuzzy set-valued functions. J. Harbin inst. Technol 21, 11-19 (1990) · Zbl 0970.26519
[7] Diamond, P.; Kloeden, P. E.: Characterization of compact sets of fuzzy sets. Fuzzy sets systems 29, 341-348 (1989) · Zbl 0661.54011
[8] Ding, Z.; Kandel, A.: Existence and stability of fuzzy differential equations. J. fuzzy math 5, 681-697 (1997) · Zbl 0884.34066
[9] Dubois, D.; Prade, H.: Operations on fuzzy numbers. J. systems sci 9, 613-626 (1978) · Zbl 0383.94045
[10] Dubois, D.; Prade, H.: Towards fuzzy differential calculus. Fuzzy sets systems 8, 1-7 (1982) · Zbl 0499.28009
[11] Friedman, M.; Ma, M.; Kandel, A.: Numerical methods for calculating the fuzzy integral. Fuzzy sets systems 83, 57-62 (1996) · Zbl 0878.28014
[12] Friedman, M.; Ma, M.; Kandel, A.: Numerical solutions of fuzzy differential and integral equations. Fuzzy sets systems 106, 35-48 (1999) · Zbl 0931.65076
[13] Goetschel, R.; Voxman, W.: Elementary calculus. Fuzzy sets systems 18, 31-43 (1986) · Zbl 0626.26014
[14] Goetschel, R.; Voxman, W.: Eigen fuzzy number sets. Fuzzy sets systems 16, 75-85 (1985) · Zbl 0581.04007
[15] Hochstadt, H.: Integral equations. (1973) · Zbl 0259.45001
[16] Kaleva, O.: Fuzzy differential equations. Fuzzy sets systems 24, 301-317 (1987) · Zbl 0646.34019
[17] Kandel, A.: Fuzzy statistics and forecast evaluation. IEEE trans. Systems man cybernet 8, 396-401 (1978) · Zbl 0396.94025
[18] Ma, M.: Some notes on the characterization of compact sets in (en,dp). Fuzzy sets systems 56, 297-301 (1993) · Zbl 0791.54011
[19] Mizumoto, M.; Tanaka, K.: The four operations of arithmetic on fuzzy numbers. Systems----comput.----controls 7, No. 5, 73-81 (1976)
[20] Nahmias, S.: Fuzzy variables. Fuzzy sets systems 1, 97-111 (1978) · Zbl 0383.03038
[21] Nanda, S.: On integration of fuzzy mappings. Fuzzy sets systems 32, 95-101 (1989) · Zbl 0671.28009
[22] Nguyen, H. T.: A note on the extension principle for fuzzy sets. J. math. Anal. appl 64, 369-380 (1978) · Zbl 0377.04004
[23] Palm, R.; Driankov, D.: Fuzzy inputs. Fuzzy sets systems 70, 315-335 (1995)
[24] Park, J. Y.; Kwan, Y. C.; Jeong, J. V.: Existence of solutions of fuzzy integral equations in banaeh spaces. Fuzzy sets systems 72, 373-378 (1995)
[25] Puri, M. L.; Ralescu, D.: Differential for fuzzy function. J. math. Anal. appl 91, 552-558 (1983) · Zbl 0528.54009
[26] Puri, M. L.; Ralescu, D.: The concept of normality for fuzzy random variables. Ann. probab 13, 1373-1379 (1985) · Zbl 0583.60011
[27] Puri, M. L.; Ralescu, D.: Fuzzy random variables. J. math. Anal. appl 114, 409-422 (1986) · Zbl 0592.60004
[28] Zhao, R.; Govind, R.: Solutions of algebraic equations involving generalized fuzzy number. Inform. sci 56, 199-243 (1991) · Zbl 0726.65048
[29] M. Sugeno, Theory of Fuzzy Integrals and Its Application, Ph.D. thesis, Tokyo Institute of Technology, 1974
[30] Zadeh, L. A.: Fuzzy sets. Inform. control 8, 338-353 (1965) · Zbl 0139.24606
[31] Zadeh, L. A.: Linguistic variables, approximate reasoning and disposition. Med. inform 8, 173-186 (1983)
[32] Zimmerman, H. J.: Fuzzy programming and linear programming with several objective functions. Fuzzy sets systems 1, 45-55 (1978)