zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. (English) Zbl 1062.68595
Summary: We first address the problem of simultaneous image segmentation and smoothing by approaching the Mumford-Shah paradigm from a curve evolution perspective. In particular, we let a set of deformable contours define the boundaries between regions in an image, where we model the data via piecewise smooth functions and employ a gradient flow to evolve these contours. Each gradient step involves solving an optimal estimation problem for the data within each region, connecting curve evolution and the Mumford-Shah functional with the theory of boundary-value stochastic processes. The resulting active contour model offers a tractable implementation of the original Mumford-Shah model (i.e., without resorting to elliptic approximations which have traditionally been favored for greater ease in implementation) to simultaneously segment and smoothly reconstruct the data within a given image in a coupled manner. Various implementations of this algorithm are introduced to increase its speed of convergence. We also outline a hierarchical implementation of this algorithm to handle important image features such as triple points and other multiple junctions. Next, by generalizing the data fidelity term of the original Mumford-Shah functional to incorporate a spatially varying penalty, we extend our method to problems in which data quality varies across the image and to images in which sets of pixel measurements are missing. This more general model leads us to a novel PDE-based approach for simultaneous image magnification, segmentation, and smoothing, thereby extending the traditional applications of the Mumford-Shah functional which only considers simultaneous segmentation and smoothing.

68U10Image processing (computing aspects)
Full Text: DOI