[1] |
Stein, R. B.: A theoretical analysis of neuronal variability. Biophys. J. 5, 173-194 (1965) |

[2] |
Lange, C. G.; Miura, R. M.: Singular perturbation analysis of boundary-value problems for differential difference equations. V. small shifts with layer behavior. SIAM J. Appl. math. 54, 249-272 (1994) · Zbl 0796.34049 |

[3] |
Lange, C. G.; Miura, R. M.: Singular perturbation analysis of boundary-value problems for differential difference equations. VI. small shifts with rapid oscillations. SIAM J. Appl. math. 54, 273-283 (1994) · Zbl 0796.34050 |

[4] |
Segundo, J. P.; Perkel, D. H.; Wyman, H.; Hegstad, H.; Moore, G. P.: Input -- output relations in computer-simulated nerve cell: influence of the statistical properties, strength, number and inter-dependence of excitatory pre-dependence of excitatory pre-synaptic terminals. Kybernetik 4, 157-171 (1968) |

[5] |
Fienberg, S. E.: Stochastic models for a single neuron firing trains: A survey. Biometrics 30, 399-427 (1974) · Zbl 0286.92003 |

[6] |
Holden, A. V.: Models of the stochastic activity of neurons. (1976) · Zbl 0353.92001 |

[7] |
Stein, R. B.: Some models of neuronal variability. Biophys. J. 7, 37-68 (1967) |

[8] |
Johannesma, P. I. M.: Diffusion models of the stochastic activity activity of neurons. Neural networks, 116-144 (1968) |

[9] |
Tuckwell, H. C.: Synaptic transmission in a model for stochastic neural activity. J. theor. Biol. 77, 65-81 (1979) |

[10] |
Gluss, B.: A model for neuron firing with exponential decay of potential resulting in diffusion equations for probability density. Bull. math. Biophys. 29, 223-243 (1967) |

[11] |
Roy, B. K.; Smith, D. R.: Analysis of the exponential decay model of the neuron showing frequency threshold effects. Bull. math. Biophys. 31, 341-357 (1969) · Zbl 0172.45402 |

[12] |
Tuckwell, H. C.; Cope, D. K.: Accuracy of neuronal interspike times calculated from a diffusion approximation. J. theor. Biol., 377-387 (1980) |

[13] |
Lange, C. G.; Miura, R. M.: Singular perturbation analysis of boundary-value problems for differential difference equations. SIAM J. Appl. math. 42, 502-531 (1982) · Zbl 0515.34058 |

[14] |
Lange, C. G.; Miura, R. M.: Singular perturbation analysis of boundary-value problems for differential difference equations. II. rapid oscillations and resonances. SIAM J. Appl. math. 45, 687-707 (1985) · Zbl 0623.34050 |

[15] |
Lange, C. G.; Miura, R. M.: Singular perturbation analysis of boundary-value problems for differential difference equations. III. turning point problems. SIAM J. Appl. math. 45, 708-734 (1985) · Zbl 0623.34051 |

[16] |
Lange, C. G.; Miura, R. M.: Singular perturbation analysis of boundary-value problems for differential difference equations. IV. A nonlinear example with layer behavior. Stud. appl. Math. 84, 231-273 (1991) · Zbl 0725.34064 |

[17] |
De G. Allen, D. N.; Southwell, R. V.: Relaxation methods applied to determine the motion, in 2D, of a viscous fluid past a fixed cylinder. Quart. J. Mech. appl. Math. 8, 129-145 (1955) · Zbl 0064.19802 |

[18] |
Doolan, E. P.; Miller, J. J. H.; Schilder, W. H. A.: Uniform numerical methods for problems with initial and boundary layers. (1980) · Zbl 0459.65058 |

[19] |
Miller, J. J. H.; O’riordan, E.; Shishkin, G. I.: Fitted numerical methods for singular perturbation problems. (1996) |

[20] |
Farrell, P. A.; O’riordan, E.; Miller, J. J. H.; Shishkin, G. I.: Parameter-uniform fitted mesh method for quasilinear differential equations with boundary layers. Comput. methods appl. Math. 1, 154-172 (2001) · Zbl 0977.34015 |

[21] |
Kellogg, R. B.; Tsan, A.: Analysis of some difference approximations for a singular perturbation problem without turning points. Math. comput. 32, 1025-1039 (1978) · Zbl 0418.65040 |