zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Coexisting chaotic attractors in a single neuron model with adapting feedback synapse. (English) Zbl 1062.92013
Summary: We consider the nonlinear dynamical behavior of a single neuron model with adapting feedback synapse, and show that chaotic behaviors exist in this model. In some parameter domain, we observe two coexisting chaotic attractors, switching from the coexisting chaotic attractors to a connected chaotic attractor, and then switching back to the two coexisting chaotic attractors. We confirm the chaoticity by simulations with phase plots, waveform plots, and power spectra.

MSC:
92C20Neural biology
37N25Dynamical systems in biology
WorldCat.org
Full Text: DOI
References:
[1] Dong, D. W.; Hopfield, J. J.: Dynamic properties of neural networks with adapting synapses. Network: comp. Neural sys. 3, 267-283 (1992) · Zbl 0762.92002
[2] Kurten, K. E.; Clark, J. W.: Chaos in neural systems. Phys. lett. A 144, No. 7, 413-418 (1986)
[3] Kepler, T. B.; Datt, S.; Meyer, R. B.; Abbott, L. F.: Chaos in a neural network circuit. Phys. D 46, No. 3, 449-457 (1990) · Zbl 0709.94690
[4] Ii, P. K. Das; Schieve, W. C.; Zeng, Z. J.: Chaos in an effective four-neuron neural network. Phys. lett. A 161, No. 1, 60-66 (1991)
[5] Zou, F.; Nossek, J. A.: Bifurcation and chaos in cellular neural network. IEEE trans. CAS 40, 166-172 (1993) · Zbl 0782.92003
[6] Li, C.; Yu, J.; Liao, X.: Chaos in a three-neuron hysteresis Hopfield-type neural network. Phys. lett. A 285, 368-372 (2001) · Zbl 0969.92504
[7] Bondarenko, V. E.: High-dimensional chaotic neural network under external sinusoidal force. Phys. lett. A 236, 513-519 (1997)
[8] Ueta, T.; Chen, G.: Chaos and bifurcation in coupled networks and their control. Controlling chaos and bifurcations in engineering systems, 581-601 (2000) · Zbl 1068.93525
[9] Liao, X.; Wong, K. -W.; Leung, C. -S.; Wu, Z.: Hopf bifurcation and chaos in a single delayed neuron equation with non-monotonic activation function. Chaos, solitons & fractals 12, 1535-1547 (2001) · Zbl 1012.92005
[10] Gilli, M.: Strange attractors in delayed cellular neural networks. IEEE trans. CAS 40, 849-853 (1993) · Zbl 0844.58056
[11] Wheeler, D. W.; Schieve, W. C.: Stability and chaos in an inertial two-neuron system. Phys. D 105, 267-284 (1997) · Zbl 1029.92500
[12] Das, A.; Das, P.; Roy, A. B.: Chaos in a three-dimensional general model of neural network. Int. J. Bifurcat. chaos 12, 2271-2281 (2002) · Zbl 1043.37512
[13] Chen, L.; Aihara, K.: Chaotic simulated annealing by a neural network model with transient chaos. Neural networks 8, No. 6, 915-930 (1995)
[14] Chen, L.; Aihara, K.: Strange attractors in chaotic neural networks. IEEE trans. CAS-I 47, No. 10, 1455-1468 (2001) · Zbl 0994.37016
[15] Lu, H.: Chaotic attractors in delayed neural networks. Phys. lett. A 198, 109-116 (2002) · Zbl 0995.92004
[16] Li, C.; Liao, X.; Yu, J.: Generating chaos by oja’s rule. Neurocomputing 55, 731-738 (2003)
[17] Caroppo, D.; Stramaglia, S.: Dynamics of neural networks with nonmonotonic neurons and adapting synapses. Phys. lett. A 246, 55-60 (1998)
[18] Dror, G.; Tsodyks, M.: Chaos in neural networks with dynamic synapses. Neurocomputing 32-33, 365-370 (2000)
[19] Zhang, Q.: Wavelet networks. IEEE trans. Neural networks 3, No. 6, 889-898 (1992)