×

zbMATH — the first resource for mathematics

Automorphic forms (I). Proceedings of the Semester of the Émile Borel Center, Paris, France, February 17–July 11, 2000. (Formes automorphes (I). Actes du Semestre du Centre Émile Borel, Paris, France, 17 février au 11 juillet 2000.) (English, French) Zbl 1063.11002
Astérisque 298. Paris: Société Mathématique de France (ISBN 2-85629-172-4/pbk). xviii, 410 p. (2005).

Show indexed articles as search result.

The articles of this volume will be reviewed individually.
Indexed articles:
Buzzard, Kevin, Questions about slopes of modular forms., 1-15 [Zbl 1122.11025]
Harris, Michael, The local Langlands correspondence: notes of (half) a course at the IHP Spring 2000., 17-145 [Zbl 1084.11028]
Hida, Haruzo, \(p\)-adic automorphic forms on reductive groups., 147-254 [Zbl 1122.11026]
Oort, Frans, Newton polygons and \(p\)-divisible groups: a conjecture by Grothendieck., 255-269 [Zbl 1078.14063]
Rapoport, Michael, A guide to the reduction modulo \(p\) of Shimura varieties., 271-318 [Zbl 1084.11029]
Saper, Leslie, \(\mathcal L\)-modules and the conjecture of Rapoport and Goresky-MacPherson., 319-334 [Zbl 1083.11033]
Soudry, David, On Langlands functoriality from classical groups to \(\text{GL}_ n\)., 335-390 [Zbl 1086.11025]
Strauch, Matthias, On the Jacquet-Langlands correspondence in the cohomology of the Lubin-Tate deformation tower., 391-410 [Zbl 1073.22010]

MSC:
11-06 Proceedings, conferences, collections, etc. pertaining to number theory
11Fxx Discontinuous groups and automorphic forms
22Exx Lie groups
11S37 Langlands-Weil conjectures, nonabelian class field theory
11R39 Langlands-Weil conjectures, nonabelian class field theory
11Gxx Arithmetic algebraic geometry (Diophantine geometry)
14Gxx Arithmetic problems in algebraic geometry; Diophantine geometry
00B25 Proceedings of conferences of miscellaneous specific interest
PDF BibTeX XML Cite