zbMATH — the first resource for mathematics

Local models in the ramified case. I: The EL-case. (English) Zbl 1063.14029
The subject of the paper under review is to investigate some simply-defined schemes (\(M=M(\Lambda, \text{\textbf{r}}\), \(\widetilde M\), \(N\) etc.) in order to get information about more complicated objects, namely models (denoted by \(X\)) of Shimura varieties of endomorphism and level type over Spec \({\mathcal O}_E\), where \(E\) is the completion of the reflex field of \(X\) at a finite prime. Particularly, information about the phenomenon of possible non-flatness of \(X\) over Spec \({\mathcal O}_E\) is obtained. An example of such \(X\) is a Shimura variety associated to group \(G=\text{Res}_{E/F}\text{GL}(n)\) where \(E/F\) is a totally ramified extension of local fields.
\(M=M(\Lambda, \text{\textbf{r}})\) is called a naive local model for the moduli problem corresponding to \(X\). \(M\) is closely related to \(X\), namely, it contains some closed subschemes (local models) which are locally for the étale topology isomorphic to \(X\).
Schemes \(M(\Lambda, \text{\textbf{r}})\) are defined in terms of linear algebra. Namely, fix a totally ramified extension \(F/F_0\) of local fields, a vector space \(V\) over \(F\), an \({\mathcal O}_F\)-lattice \(\Lambda \subset V\) and a multidimension \(\text{\textbf{r}}=\{r_{\varphi}\}\) (here the \(\varphi\)’s run over all inclusions of \(F/F_0\) in \(\bar F_0\)) such that the reflex field of \(\text{\textbf{r}}\) is \(E\). \(M\) represents a functor that (roughly speaking) associates to an extension \(S/F_0\) the set of sublattices \(\mathcal F\) of \(\Lambda \otimes_{F_0}S\) such that the multidimension of \(\mathcal F\) is \(\text{\textbf{r}}\). Similarly, \(\widetilde M\) represents a functor associating to \(S\) the pair (\(\mathcal F\), a base of \(\mathcal F\)), and \(N(S)\) is a set of some \(r\times r\)-matrices over \(S\) (\(r=\sum_{\varphi}r_{\varphi}\)). There is a diagram \(M\overset{\pi}{\leftarrow} \widetilde M \overset{\phi}{\to}N\). Further, let \(M^{\text{loc}}\) be the closure of \(M\otimes_{{\mathcal O}_E}E\) in \(M\). The following theorems are proved:
Theorem A. The morphism \(\phi\) is smooth.
Theorem B. \(M^{\text{loc}}\) is normal, Cohen-Macaulay, its special fiber is reduced, normal with rational singularities.
The existence of an inclusion of the special fiber of \(M\) to the affine Grassmannian permits to prove a theorem on its Schubert subvariety. The description of the resolution of the singularities of \(N\) over the Galois closure of \(F/F_0\) permits to calculate the complex of nearby cycles on \(M\) (together with the Gal(\(F_0\))-action) in terms of the constant sheaves on some varieties related to \(M\); the statement of this result is too large to be given here.
The final result of the discussion about relations between \(X\) and \(M\) is the following: while \(X\) is not always flat over \({\mathcal O}_E\), it is conjectured that \(M^{\text{loc}}\) is always flat over \({\mathcal O}_E\).

14G35 Modular and Shimura varieties
11G18 Arithmetic aspects of modular and Shimura varieties
Full Text: DOI arXiv
[1] A. Beauville-Y. Laszlo: Conformal blocks and generalized theta functions, Comm. Math. Phys. 164 (1994), 385-419. · Zbl 0815.14015
[2] A. Beilinson-J. Bernstein-P. Deligne: Faisceaux pervers, Astérisque 100 (1982), 3-171.
[3] W. Borho-R. MacPherson: Partial resolutions of nilpotent varieties, Astérisque 101-102 (1983), 23-74.
[4] A. Braverman-D. Gaitsgory: On Ginzburg’s Lagrangian construction of representations of \(GL_n\), Math. Res. Lett. 6 (1999), 195-201. · Zbl 0971.22010
[5] C. De Concini-C. Procesi: Symmetric Functions, Conjugacy Classes and the Flag Variety, Invent. Math. 64 (1981), 203-219. · Zbl 0475.14041
[6] P. Deligne: Théorèmes de finitude en cohomologie \(\ell\)-adique, in SGA \(4\frac{1}{2}\), 233-261, SLN 569, Springer-Verlag 1977.
[7] P. Deligne-G. Pappas: Singularités des espaces de modules de Hilbert, en les caractéristiques divisants le discriminant, Compositio Math. 90 (1994), 59-79.
[8] D. Eisenbud-D. Saltman: Rank varieties of matrices, Commutative Algebra, MSRI Publications 15 (1989), Hochster, Huneke, Sally ed., Springer Verlag.
[9] G. Faltings: Algebraic loop groups and moduli spaces of bundles, preprint Max-Planck-Institut, Bonn 2000, 29 p.
[10] E. Frenkel-D. Gaitsgory-D. Kazhdan-K. Vilonen: Geometric realization of Whittaker functions and the Langlands conjecture, J. Amer. Math. Soc. 11 (1998), 451-484. · Zbl 1068.11501
[11] V. Ginzburg: Perverse sheaves on a loop group and Langlands duality, alg-geom/9511007.
[12] U. Görtz: On the flatness of models of certain Shimura varieties of PEL type, Math. Ann. 321 (2001), 689-727. · Zbl 1073.14526
[13] U. Görtz: On the flatness of local models for the symplectic group, preprint Köln 2000.
[14] T. Haines-B. C. Ngô: Nearby cycles for local models of some Shimura varieties, preprint 1999.
[15] R. Hotta-T. Springer: A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math. 41 (1977), 113-127. · Zbl 0389.20037
[16] L. Illusie: Autour du théorème de monodromie locale, Astérisque 223 (1994), 9-58.
[17] R. Kottwitz: Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), 373-444. · Zbl 0796.14014
[18] R. Kottwitz-M. Rapoport: Minuscule alcoves for \(GL_n\)and \(GSp_{2n}\), Manuscripta Math. 102 (2000), 403-428.
[19] G. Laumon-L. Moret-Bailly. Champs algébriques. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Vol. 39. Springer-Verlag Berlin Heidelberg 2000.
[20] P. Littelmann: Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras. Journ. AMS 11 3 (1999) pp. 551-567. · Zbl 0915.20022
[21] G. Lusztig: Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), 169-178. · Zbl 0473.20029
[22] H. Matsumura: Commutative Algebra. Benjamin/Cummings Publishing Co., Reading, Mass. 1980. · Zbl 0441.13001
[23] O. Mathieu: Formules de caractères pour les algèbres de Kac-Moody générales, Astérisque 159-160 (1988).
[24] V.B. Mehta-W. van der Kallen: A simultaneous Frobenius splitting for closures of conjugacy classes of nilpotent matrices, Compositio Math. 84 (1992), 211-221. · Zbl 0770.17009
[25] I. Macdonald: Symmetric functions and Hall polynomials, \(2^{\text\textrm{nd}}\) ed., Oxford 1995. · Zbl 0824.05059
[26] I. Mirkovic-K. Vilonen: Perverse sheaves on affine Grassmannians and Langlands duality, Math. Res. Lett. 7 (2000), 13-24.
[27] B.C. Ngô-P. Polo: Résolutions de Demazure affines et formule de Casselman-Shalika géométrique, J. Alg. Geom. 10 (2001), 514-547.
[28] G. Pappas: Local structure of arithmetic moduli for PEL Shimura varieties, J. Alg. Geom. 9 (2000), 577-605. · Zbl 0978.14023
[29] M. Rapoport-Th. Zink: Period spaces for \(p\)-divisible groups. Ann. of Math. Studies, vol. 141, Princeton University Press 1996. · Zbl 0873.14039
[30] N. Spaltenstein: The fixed point set of a unipotent transformation on the flag manifold, Proc. Kon. Ak. v. Wet. 79 (5) (1976), 452-456. · Zbl 0343.20029
[31] E. Strickland: On the variety of projectors, J. Algebra 106 (1987), 135-147. · Zbl 0612.14001
[32] J. Weyman: Two results on equations of nilpotent orbits, J. Alg. Geom., to appear. · Zbl 1009.20052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.