Ding, Shusen \(L^{\varphi}(\mu)\)-averaging domains and the quasi-hyperbolic metric. (English) Zbl 1063.30022 Comput. Math. Appl. 47, No. 10-11, 1611-1618 (2004). Summary: We first introduce \(L^{\varphi}(\mu)\)-averaging domains which are generalizations of existing domains, such as John domains and \(L^{s}(\mu)\)-averaging domains. Then, we characterize \(L^{\varphi}(\mu)\)-averaging domains using the quasihyperbolic metric. Finally, we give applications to quasiconformal mappings. Cited in 1 ReviewCited in 31 Documents MSC: 30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations Keywords:Domains; Mappings; Measures; Weights; Quasihyperbolic metric PDF BibTeX XML Cite \textit{S. Ding}, Comput. Math. Appl. 47, No. 10--11, 1611--1618 (2004; Zbl 1063.30022) Full Text: DOI References: [1] Ding, S., Weighted Hardy-Littlewood inequality for \(A\)-harmonic tensors, (Proc. Amer. Math. Soc., 125 (1997)), 1727-1735, (6) · Zbl 0866.30017 [3] Ding, S.; Nolder, C., \(L^s\)(μ)-averaging domains, J. Math. Anal. Appl., 283, 85-99 (2003) · Zbl 1027.30053 [4] Ding, S.; Shi, P., Weighted Poincaré-type inequalities for differential forms in \(L^s\)(μ)-averaging domains, J. Math. Anal. Appl., 227, 200-215 (1998) · Zbl 0918.26013 [5] Gehring, F. W.; Osgood, B. G., Uniform domains and the quasihyperbolic metric, J. Analyse Math., 36, 50-74 (1979) · Zbl 0449.30012 [6] Iwaniec, T.; Nolder, C., Hardy-Littlewood inequality for quasiregular mappings in certain domains in \(R^n\), Ann. Acad. Sci. Fenn. Ser. A.I. Math., 10, 267-282 (1985) · Zbl 0588.30023 [7] Martio, O., John domains, bi-Lipschitz balls and Poincaré inequality, Rev. Roumaine Math. Pures. Appl., 33 (1988) · Zbl 0652.30012 [8] Staples, S. G., \(L^p\)-averaging domains and the Poincare inequality, Ann. Acad. Sci. Fenn, Ser. AI Math., 14, 103-127 (1989) · Zbl 0706.26010 [9] Heinonen, J.; Kilpelainen, T.; Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, ((1993)), Oxford · Zbl 0776.31007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.