Stević, Stevo On harmonic Hardy spaces and area integrals. (English) Zbl 1063.31004 J. Math. Soc. Japan 56, No. 2, 339-347 (2004). The author proves several necessary and sufficient conditions for a harmonic function in the unit ball \(B\) of \(\mathbb R^n (n\geq 3)\) to belong to the Hardy space \(\mathcal H^p(B), 1<p<\infty\), of harmonic functions on \(B\). One such result is that \(u\in\mathcal H^p(B), 1<p<\infty\), if and only if \(u\) has the \(p\)-Lusin property with respect to a certain Stoltz domain. Reviewer: Manfred Stoll (Columbia) Cited in 1 Document MSC: 31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions 30D55 \(H^p\)-classes (MSC2000) 32A35 \(H^p\)-spaces, Nevanlinna spaces of functions in several complex variables Keywords:harmonic functions; Hardy spaces; Stoltz domain PDF BibTeX XML Cite \textit{S. Stević}, J. Math. Soc. Japan 56, No. 2, 339--347 (2004; Zbl 1063.31004) Full Text: DOI