zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. (English) Zbl 1063.65113
Summary: A new Runge-Kutta method with minimal dispersion and dissipation error is developed. The Chebyshev pseudospectral method is utilized using spatial discretization and a new fourth-order six-stage Runge-Kutta scheme is used for time advancing. The proposed scheme is more efficient than the existing ones for acoustic computations.

MSC:
65M70Spectral, collocation and related methods (IVP of PDE)
35L05Wave equation (hyperbolic PDE)
76Q05Hydro- and aero-acoustics
76M22Spectral methods (fluid mechanics)
65L06Multistep, Runge-Kutta, and extrapolation methods
65M15Error bounds (IVP of PDE)
WorldCat.org
Full Text: DOI
References:
[1] Albrecht, P.: The Runge -- Kutta theory in a nutshell. SIAM J. Numer. anal. 33, No. 5, 1712-1735 (1996) · Zbl 0858.65074
[2] Bogey, C.; Bailly, C.: A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. comput. Phys. 194, 194-214 (2004) · Zbl 1042.76044
[3] Butcher, J. C.: The numerical analysis of ordinary differential equationsrunge -- Kutta and general linear methods. (1987) · Zbl 0616.65072
[4] Hu, F. Q.; Hussaini, M. Y.; Manthey, J. L.: Low-dissipation and low-dispersion Runge -- Kutta schemes for computational acoustics. J. comput. Phys. 124, 177-191 (1996) · Zbl 0849.76046
[5] Kosloff, D.; Tal-Ezer, J.: A modified Chebyshev pseudospectral method with $O(N-1)$ time step restriction. J. comput. Phys. 104, 457-469 (1993) · Zbl 0781.65082
[6] Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. math. 11, 431-441 (1963) · Zbl 0112.10505
[7] Mead, J. L.; Renaut, R. A.: Optimal Runge -- Kutta methods for first order pseudospectral operators. J. comput. Phys. 152, 404-419 (1999) · Zbl 0935.65100
[8] Stanescu, D.; Habashi, W. G.: 2N-storage low dissipation and dispersion Runge -- Kutta schemes for computational acoustics. J. comput. Phys. 143, 674-681 (1998) · Zbl 0952.76063
[9] Tam, C. K. W.: Computational aeroacousticsissues and methods. Aiaa j. 33, 1788-1796 (1995) · Zbl 0856.76080
[10] Van Der Howen, P. J.; Sommeijer, B. P.: Explicit Runge -- Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions. SIAM J. Numer. anal. 24, 595-617 (1987) · Zbl 0624.65058