zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Augmented formulations for solving Maxwell equations. (English) Zbl 1063.78018
Summary: We consider augmented variational formulations for solving the static or time-harmonic Maxwell equations. For that, a term is added to the usual H (curl) conforming formulations. It consists of a (weighted) $L^2$ scalar product between the divergence of the EM and the divergence of test fields. In this respect, the methods we present are H (curl, div) conforming. We also build mixed, augmented variational formulations, with either one or two Lagrange multipliers, to dualize the equation on the divergence and, when applicable, the relation on the tangential or normal trace of the field. It is proven that one can derive formulations, which are equivalent to the original static or time-harmonic Maxwell equations. In the latter case, spurious modes are automatically excluded. Numerical analysis and experiments will be presented in the forthcoming paper [the author and E. Jamelot, Augmented formulations for solving Maxwell equations: numerical analysis and experiments, in preparation].

MSC:
78M10Finite element methods (optics)
35Q60PDEs in connection with optics and electromagnetic theory
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
WorldCat.org
Full Text: DOI
References:
[1] Amrouche, C.; Bernardi, C.; Dauge, M.; Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. methods appl. Sci. 21, 823-864 (1998) · Zbl 0914.35094
[2] Assous, F.; Jr., P. Ciarlet; Labrunie, S.: Solution of axisymmetric Maxwell equations. Math. methods appl. Sci. 26, 861-896 (2003) · Zbl 1100.78007
[3] Assous, F.; Jr., P. Ciarlet; Labrunie, S.; Segré, J.: Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method. J. comput. Phys. 191, 147-176 (2003) · Zbl 1033.65086
[4] Assous, F.; Jr., P. Ciarlet; Raviart, P. -A.; Sonnendrücker, E.: A characterization of the singular part of the solution to Maxwell’s equations in a polyhedral domain. Math. methods appl. Sci. 22, 485-499 (1999) · Zbl 0931.35169
[5] Assous, F.; Jr., P. Ciarlet; Segré, J.: Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the singular complement method. J. comput. Phys. 161, 218-249 (2000) · Zbl 1007.78014
[6] Assous, F.; Jr., P. Ciarlet; Sonnendrücker, E.: Resolution of the Maxwell equations in a domain with reentrant corners. Modél. math. Anal. numér. 32, 359-389 (1998) · Zbl 0924.65111
[7] Assous, F.; Degond, P.; Heintzé, E.; Raviart, P. A.; Segré, J.: On a finite element method for solving the three-dimensional Maxwell equations. J. comput. Phys. 109, 222-237 (1993) · Zbl 0795.65087
[8] Ben Belgacem, F.; Bernardi, C.: Spectral element discretization of the Maxwell equations. Math. comp. 68, 1497-1520 (1999) · Zbl 0932.65110
[9] Ben Belgacem, F.; Bernardi, C.; Costabel, M.; Dauge, M.: Un résultat de densité pour LES équations de Maxwell. CR acad. Sci. Paris, ser. I 324, 731-736 (1997) · Zbl 0880.35115
[10] Dhia, A. -S. Bonnet-Ben; Hazard, C.; Lohrengel, S.: A singular field method for the solution of Maxwell’s equations in polyhedral domains. SIAM J. Appl. math. 59, 2028-2044 (1999) · Zbl 0933.78007
[11] Buffa, A.; Jr., P. Ciarlet: On traces for functional spaces related to Maxwell’s equations. Part I: An integration by parts formula in Lipschitz polyhedra. Math. methods appl. Sci. 24, 9-30 (2001) · Zbl 0998.46012
[12] Buffa, A.; Jr., P. Ciarlet: On traces for functional spaces related to Maxwell’s equations. Part II: Hodge decomposition on the boundary of Lipschitz polyhedra and applications. Math. methods appl. Sci. 24, 31-48 (2001) · Zbl 0976.46023
[13] Jr., P. Ciarlet; Girault, V.: Condition inf-sup pour l’élément fini de Taylor-Hood P2-iso-P1, 3-D; application aux équations de Maxwell. CR acad. Sci. Paris, ser. I 335, 827-832 (2002)
[14] Jr., P. Ciarlet; Hazard, C.; Lohrengel, S.: LES équations de Maxwell dans un polyèdre : un résultat de densité. CR acad. Sci. Paris, ser. I 326, 1305-1310 (1998) · Zbl 0915.35099
[15] P. Ciarlet Jr., E. Jamelot, Augmented formulations for solving Maxwell equations: numerical analysis and experiments, in preparation
[16] Costabel, M.; Dauge, M.: Un résultat de densité pour LES équations de Maxwell régularisées dans un domaine lipschitzien. CR acad. Sci. Paris, ser. I 327, 849-854 (1998)
[17] Costabel, M.; Dauge, M.: Weighted regularization of Maxwell equations in polyhedral domains. Numer. math. 93, 239-277 (2002) · Zbl 1019.78009
[18] Costabel, M.; Dauge, M.; Martin, D.: Numerical investigation of a boundary penalization method for Maxwell equations. Proceedings of the 3rd European conference on numerical mathematics and advanced applications, 214-221 (2000) · Zbl 0980.78011
[19] Degond, P.; Raviart, P. -A.: An analysis of the Darwin model of approximation to Maxwell’s equations. Forum math. 4, 13-44 (1992) · Zbl 0755.35137
[20] Demkowicz, L.; Vardapetyan, L.: Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements. Comput. methods appl. Mech. engrg. 152, 103-124 (1998) · Zbl 0994.78011
[21] Fernandes, P.; Gilardi, G.: Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. models methods appl. Sci. 7, 957-991 (1997) · Zbl 0910.35123
[22] Fernandes, P.; Perugia, I.: Vector potential formulation for magnetostatics and modelling of permanent magnets. IMA J. Appl. math. 66, 293-318 (2001) · Zbl 0985.78005
[23] V. Girault, P.-A. Raviart, Finite element methods for Navier-Stokes equations, Volume 5 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, Germany (1986) · Zbl 0585.65077
[24] Hazard, C.; Lohrengel, S.: A singular field method for Maxwell’s equations: numerical aspects for 2D magnetostatics. SIAM J. Appl. math 40, 1021-1040 (2002) · Zbl 1055.78011
[25] Kikuchi, F.: Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. Comput. methods appl. Mech. engrg. 64, 509-521 (1987) · Zbl 0644.65087
[26] Lions, J. -L.; Magenes, E.: Problèmes aux limites non homogènes et applications. (1968) · Zbl 0165.10801
[27] Lohrengel, S.; Nicaise, S.: Singularities and density problems for composite materials in electromagnetism. Commun. part. Diff. eq. 27, 1575-1623 (2002) · Zbl 1042.78014
[28] Nédélec, J. C.: Mixed finite elements in R3. Numer. math. 35, 315-341 (1980)
[29] Nédélec, J. C.: A new family of mixed finite elements in R3. Numer. math. 50, 57-81 (1986) · Zbl 0625.65107
[30] Nicaise, S.: Edge elements on anisotropic meshes and approximation of the Maxwell equations. SIAM J. Numer. anal. 39, 784-816 (2001) · Zbl 1001.65122
[31] Rachowicz, W.; Demkowicz, L.: An hp-adaptive finite element method for electromagnetics--part II: a 3D implementation. Int. J. Numer. math. Engng 53, 147-180 (2002) · Zbl 0994.78012
[32] Vardapetyan, L.; Demkowicz, L.; Neikirk, D.: Hp-vector finite element method for eigenmode analysis of waveguides. Comput. methods appl. Mech. engrg. 192, 185-201 (2003) · Zbl 1014.78012
[33] Weber, C.: A local compactness theorem for Maxwell’s equations. Math. methods appl. Sci. 2, 12-25 (1980) · Zbl 0432.35032