Ciarlet, Patrick jun. Augmented formulations for solving Maxwell equations. (English) Zbl 1063.78018 Comput. Methods Appl. Mech. Eng. 194, No. 2-5, 559-586 (2005). Summary: We consider augmented variational formulations for solving the static or time-harmonic Maxwell equations. For that, a term is added to the usual H (curl) conforming formulations. It consists of a (weighted) \(L^2\) scalar product between the divergence of the EM and the divergence of test fields. In this respect, the methods we present are H (curl, div) conforming. We also build mixed, augmented variational formulations, with either one or two Lagrange multipliers, to dualize the equation on the divergence and, when applicable, the relation on the tangential or normal trace of the field. It is proven that one can derive formulations, which are equivalent to the original static or time-harmonic Maxwell equations. In the latter case, spurious modes are automatically excluded. Numerical analysis and experiments will be presented in the forthcoming paper [the author and E. Jamelot, Augmented formulations for solving Maxwell equations: numerical analysis and experiments, in preparation]. Cited in 34 Documents MSC: 78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory 35Q60 PDEs in connection with optics and electromagnetic theory 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs Keywords:Maxwell equations; Augmented variational formulations; Lagrange multipliers PDF BibTeX XML Cite \textit{P. Ciarlet jun.}, Comput. Methods Appl. Mech. Eng. 194, No. 2--5, 559--586 (2005; Zbl 1063.78018) Full Text: DOI References: [1] Amrouche, C.; Bernardi, C.; Dauge, M.; Girault, V., Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., 21, 823-864 (1998) · Zbl 0914.35094 [2] Assous, F.; Ciarlet, P.; Labrunie, S., Solution of axisymmetric Maxwell equations, Math. Methods Appl. Sci., 26, 861-896 (2003) · Zbl 1100.78007 [3] Assous, F.; Ciarlet, P.; Labrunie, S.; Segré, J., Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains: the singular complement method, J. Comput. Phys., 191, 147-176 (2003) · Zbl 1033.65086 [4] Assous, F.; Ciarlet, P.; Raviart, P.-A.; Sonnendrücker, E., A characterization of the singular part of the solution to Maxwell’s equations in a polyhedral domain, Math. Methods Appl. Sci., 22, 485-499 (1999) · Zbl 0931.35169 [5] Assous, F.; Ciarlet, P.; Segré, J., Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the singular complement method, J. Comput. Phys., 161, 218-249 (2000) · Zbl 1007.78014 [6] Assous, F.; Ciarlet, P.; Sonnendrücker, E., Resolution of the Maxwell equations in a domain with reentrant corners, Modél. Math. Anal. Numér., 32, 359-389 (1998) · Zbl 0924.65111 [7] Assous, F.; Degond, P.; Heintzé, E.; Raviart, P. A.; Segré, J., On a finite element method for solving the three-dimensional Maxwell equations, J. Comput. Phys., 109, 222-237 (1993) · Zbl 0795.65087 [8] Ben Belgacem, F.; Bernardi, C., Spectral element discretization of the Maxwell equations, Math. Comp., 68, 1497-1520 (1999) · Zbl 0932.65110 [9] Ben Belgacem, F.; Bernardi, C.; Costabel, M.; Dauge, M., Un résultat de densité pour les équations de Maxwell, C.R. Acad. Sci. Paris, Ser. I, 324, 731-736 (1997) · Zbl 0880.35115 [10] Bonnet-Ben Dhia, A.-S.; Hazard, C.; Lohrengel, S., A singular field method for the solution of Maxwell’s equations in polyhedral domains, SIAM J. Appl. Math., 59, 2028-2044 (1999) · Zbl 0933.78007 [11] Buffa, A.; Ciarlet, P., On traces for functional spaces related to Maxwell’s equations. Part I: an integration by parts formula in Lipschitz polyhedra, Math. Methods Appl. Sci., 24, 9-30 (2001) · Zbl 0998.46012 [12] Buffa, A.; Ciarlet, P., On traces for functional spaces related to Maxwell’s equations. Part II: Hodge decomposition on the boundary of Lipschitz polyhedra and applications, Math. Methods Appl. Sci., 24, 31-48 (2001) · Zbl 0976.46023 [13] Ciarlet, P.; Girault, V., Condition inf-sup pour l’élément fini de Taylor-Hood \(P_2\)-iso-\(P_1, 3\)-D; application aux équations de Maxwell, C.R. Acad. Sci. Paris, Ser. I, 335, 827-832 (2002) · Zbl 1021.78009 [14] Ciarlet, P.; Hazard, C.; Lohrengel, S., Les équations de Maxwell dans un polyèdre : un résultat de densité, C.R. Acad. Sci. Paris, Ser. I, 326, 1305-1310 (1998) · Zbl 0915.35099 [16] Costabel, M.; Dauge, M., Un résultat de densité pour les équations de Maxwell régularisées dans un domaine lipschitzien, C.R. Acad. Sci. Paris, Ser. I, 327, 849-854 (1998) · Zbl 0921.35169 [17] Costabel, M.; Dauge, M., Weighted regularization of Maxwell equations in polyhedral domains, Numer. Math., 93, 239-277 (2002) · Zbl 1019.78009 [18] Costabel, M.; Dauge, M.; Martin, D., Numerical investigation of a boundary penalization method for Maxwell equations, (Neittaanmäki, P.; etal., Proceedings of the 3rd European Conference on Numerical Mathematics and Advanced Applications (2000), World Scientific: World Scientific Singapore), 214-221 · Zbl 0980.78011 [19] Degond, P.; Raviart, P.-A., An analysis of the Darwin model of approximation to Maxwell’s equations, Forum Math., 4, 13-44 (1992) · Zbl 0755.35137 [20] Demkowicz, L.; Vardapetyan, L., Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements, Comput. Methods Appl. Mech. Engrg., 152, 103-124 (1998) · Zbl 0994.78011 [21] Fernandes, P.; Gilardi, G., Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions, Math. Models Methods Appl. Sci., 7, 957-991 (1997) · Zbl 0910.35123 [22] Fernandes, P.; Perugia, I., Vector potential formulation for magnetostatics and modelling of permanent magnets, IMA J. Appl. Math., 66, 293-318 (2001) · Zbl 0985.78005 [24] Hazard, C.; Lohrengel, S., A singular field method for Maxwell’s equations: numerical aspects for 2D magnetostatics, SIAM J. Appl. Math, 40, 1021-1040 (2002) · Zbl 1055.78011 [25] Kikuchi, F., Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism, Comput. Methods Appl. Mech. Engrg., 64, 509-521 (1987) · Zbl 0644.65087 [26] Lions, J.-L.; Magenes, E., Problèmes aux limites non homogènes et applications (1968), Dunod: Dunod Paris, France · Zbl 0165.10801 [27] Lohrengel, S.; Nicaise, S., Singularities and density problems for composite materials in electromagnetism, Commun. Part. Diff. Eq., 27, 1575-1623 (2002) · Zbl 1042.78014 [28] Nédélec, J. C., Mixed finite elements in \(R^3\), Numer. Math., 35, 315-341 (1980) · Zbl 0419.65069 [29] Nédélec, J. C., A new family of mixed finite elements in \(R^3\), Numer. Math., 50, 57-81 (1986) · Zbl 0625.65107 [30] Nicaise, S., Edge elements on anisotropic meshes and approximation of the Maxwell equations, SIAM J. Numer. Anal., 39, 784-816 (2001) · Zbl 1001.65122 [31] Rachowicz, W.; Demkowicz, L., An hp-adaptive finite element method for electromagnetics-Part II: a 3D implementation, Int. J. Numer. Math. Engng, 53, 147-180 (2002) · Zbl 0994.78012 [32] Vardapetyan, L.; Demkowicz, L.; Neikirk, D., hp-vector finite element method for eigenmode analysis of waveguides, Comput. Methods Appl. Mech. Engrg., 192, 185-201 (2003) · Zbl 1014.78012 [33] Weber, C., A local compactness theorem for Maxwell’s equations, Math. Methods Appl. Sci., 2, 12-25 (1980) · Zbl 0432.35032 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.