Mourougane, Christophe Computations of Bott-Chern classes on \(\mathbb{P}(E)\). (English) Zbl 1064.14022 Duke Math. J. 124, No. 2, 389-420 (2004). Bott-Chern classes of the metrized relative Euler sequence describing the relative tangent bundle of the variety \(\mathbb P(E)\) of hyperplanes in a holomorphic Hermitian vector bundle \((E,h)\) on a complex manifold are computed. Applications to the construction of the arithmetic characteristic classes of an arithmetic vector bundle \({\overline{E}}\) and to the computation of the height of \(\mathbb P({\overline{E}})\) with respect to the tautological quotient bundle \({\mathcal O}_{\overline{E}}(1)\) are also presented. Reviewer: Gheorghe Pitiş (Braşov) Cited in 8 Documents MSC: 14G40 Arithmetic varieties and schemes; Arakelov theory; heights 53C55 Global differential geometry of Hermitian and Kählerian manifolds 32L05 Holomorphic bundles and generalizations Keywords:holomorphic vector bundle; Euler sequence PDF BibTeX XML Cite \textit{C. Mourougane}, Duke Math. J. 124, No. 2, 389--420 (2004; Zbl 1064.14022) Full Text: DOI arXiv OpenURL References: [1] J.-M. Bismut, H. Gillet, and C. Soulé, Analytic torsion and holomorphic determinant bundles, I, II , and III, Comm. Math. Phys. 115 (1988), 49–78.; 179–126.; 301–351. ; ; Mathematical Reviews (MathSciNet): Mathematical Reviews (MathSciNet): MR0931666 · Zbl 0651.32017 [2] J.-B. Bost, H. Gillet, and C. Soulé, Heights of projective varieties and positive Green forms , J. Amer. Math. Soc. 7 (1994), 903–1027. JSTOR: · Zbl 0973.14013 [3] R. Bott and S.-S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections , Acta Math. 114 (1965), 71–112. · Zbl 0148.31906 [4] S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles , Proc. London Math. Soc. (3) 50 (1985), 1–26. · Zbl 0529.53018 [5] R. Elkik, Métriques sur les fibrés d’intersection , Duke Math. J. 61 (1990), 303–328. · Zbl 0706.14008 [6] W. Fulton, Intersection Theory , 2nd ed., Ergeb. Math. Grenzgeb. (3) 2 , Springer, Berlin, 1998. · Zbl 0541.14005 [7] W. Fulton and R. Lazarsfeld, Positive polynomials for ample vector bundles , Ann. of Math. (2) 118 (1983), 35–60. · Zbl 0537.14009 [8] H. Gillet and C. Soulé, Arithmetic intersection theory , Inst. Hautes Études Sci. Publ. Math. 72 (1990), 93–174. · Zbl 0741.14012 [9] –. –. –. –., Characteristic classes for algebraic vector bundles with Hermitian metric, I and II , Ann. of Math. (2) 131 (1990), 163–203. and 205–238. ; Mathematical Reviews (MathSciNet): JSTOR: links.jstor.org · Zbl 0715.14018 [10] –. –. –. –., An arithmetic Riemann-Roch theorem , Invent. Math. 110 (1992), 473–543. · Zbl 0777.14008 [11] V. Maillot, Un calcul de Schubert arithmétique , Duke Math. J. 80 (1995), 195–221. · Zbl 0867.14024 [12] H. Tamvakis, Bott-Chern forms and arithmetic intersections , Enseign. Math. (2) 43 (1997), 33–54. · Zbl 0917.32025 [13] –. –. –. –., Arithmetic intersection theory on flag varieties , Math. Ann. 314 (1999), 641–665. · Zbl 0955.14037 [14] S. Zhang, Positive line bundles on arithmetic varieties , J. Amer. Math. Soc. 8 (1995), 187–221. JSTOR: · Zbl 0861.14018 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.