×

zbMATH — the first resource for mathematics

Asymptotic behaviour of stochastic quasi dissipative systems. (English) Zbl 1064.47047
Summary: We prove uniqueness of the invariant measure and the exponential convergence to equilibrium for a stochastic dissipative system whose drift is perturbed by a bounded function.
MSC:
47D07 Markov semigroups and applications to diffusion processes
35K90 Abstract parabolic equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34F05 Ordinary differential equations and systems with randomness
34G20 Nonlinear differential equations in abstract spaces
35B40 Asymptotic behavior of solutions to PDEs
35R60 PDEs with randomness, stochastic partial differential equations
47D06 One-parameter semigroups and linear evolution equations
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] J.M. Bismut , Large deviations and the Malliavin Calculus . Birkhäuser ( 1984 ). MR 755001 | Zbl 0537.35003 · Zbl 0537.35003
[2] H. Brézis , Opérateurs maximaux monotones . North-Holland, Amsterdam ( 1973 ). · Zbl 0252.47055
[3] S. Cerrai , A Hille-Yosida theorem for weakly continuous semigroups . Semigroup Forum 49 ( 1994 ) 349 - 367 . Article | Zbl 0817.47048 · Zbl 0817.47048 · doi:10.1007/BF02573496 · eudml:135359
[4] S. Cerrai , Second order PDE’s in finite and infinite dimensions . A probabilistic approach. Springer, Lecture Notes in Math. 1762 ( 2001 ). Zbl 0983.60004 · Zbl 0983.60004 · doi:10.1007/b80743 · link.springer.de
[5] S. Cerrai , Optimal control problems for stochastic reaction-diffusion systems with non Lipschitz coefficients . SIAM J. Control Optim. 39 ( 2001 ) 1779 - 1816 . MR 1825865 | Zbl 0987.60073 · Zbl 0987.60073 · doi:10.1137/S0363012999356465
[6] S. Cerrai , Stationary Hamilton-Jacobi equations in Hilbert spaces and applications to a stochastic optimal control problem . SIAM J. Control Optim. (to appear). Zbl 0992.60066 · Zbl 0992.60066 · doi:10.1137/S0363012999359949
[7] G. Da Prato , Stochastic evolution equations by semigroups methods . Centre de Recerca Matematica, Barcelona, Quaderns 11 ( 1998 ). · Zbl 0895.93040
[8] G. Da Prato , A. Debussche and B. Goldys , Invariant measures of non symmetric dissipative stochastic systems . Probab. Theor. Related Fields (to appear). MR 1918538 · Zbl 1087.60049
[9] G. Da Prato , D. Elworthy and J. Zabczyk , Strong Feller property for stochastic semilinear equations . Stochastic Anal. Appl. 13 ( 1995 ) 35 - 45 . MR 1313205 | Zbl 0817.60081 · Zbl 0817.60081 · doi:10.1080/07362999508809381
[10] G. Da Prato and M. Röckner , Singular dissipative stochastic equations in Hilbert spaces , Preprint. S.N.S. Pisa ( 2001 ). MR 1936019 | Zbl 1036.47029 · Zbl 1036.47029 · doi:10.1007/s004400200214
[11] G. Da Prato and J. Zabczyk , Stochastic equations in infinite dimensions . Cambridge University Press ( 1992 ). MR 1207136 | Zbl 0761.60052 · Zbl 0761.60052 · doi:10.1017/CBO9780511666223
[12] G. Da Prato and J. Zabczyk , Ergodicity for Infinite Dimensional Systems . Cambridge University Press, London Math. Soc. Lecture Notes 229 ( 1996 ). MR 1417491 | Zbl 0849.60052 · Zbl 0849.60052 · doi:10.1017/CBO9780511662829
[13] G. Da Prato and J. Zabczyk , Differentiability of the Feynman-Kac semigroup and a control application . Rend. Mat. Accad. Lincei. 8 ( 1997 ) 183 - 188 . Zbl 0910.93025 · Zbl 0910.93025 · eudml:244107
[14] E.B. Dynkin , Markov Processes , Vol. I. Springer-Verlag ( 1965 ). Zbl 0132.37901 · Zbl 0132.37901
[15] K.D. Elworthy , Stochastic flows on Riemannian manifolds , edited by M.A. Pinsky and V. Wihstutz. Birkhäuser, Diffusion Processes and Related Problems in Analysis II ( 1992 ) 33 - 72 . MR 1187985 | Zbl 0758.58035 · Zbl 0758.58035
[16] W.H. Fleming and H.M. Soner , Controlled Markov processes and viscosity solutions . Springer-Verlag ( 1993 ). MR 1199811 | Zbl 0773.60070 · Zbl 0773.60070
[17] T. Kato , Nonlinear semigroups and evolution equations . J. Math. Soc. Japan 10 ( 1967 ) 508 - 520 . MR 226230 | Zbl 0163.38303 · Zbl 0163.38303 · doi:10.2969/jmsj/01940508
[18] K.R. Parthasarathy , Probability measures on metric spaces . Academic Press ( 1967 ). MR 226684 | Zbl 0153.19101 · Zbl 0153.19101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.