×

Iterated smoothed bootstrap confidence intervals for population quantiles. (English) Zbl 1064.62051

Summary: This paper investigates the effects of smoothed bootstrap iterations on coverage probabilities of smoothed bootstrap and bootstrap-\(t\) confidence intervals for population quantiles, and establishes the optimal kernel bandwidths at various stages of the smoothing procedures. The conventional smoothed bootstrap and bootstrap-\(t\) methods have been known to yield one-sided coverage errors of orders \(O(n^{-1/2})\) and \(o(n^{-2/3})\), respectively, for intervals based on the sample quantile of a random sample of size \(n\). We sharpen the latter result to \(O(n^{-5/6})\) with proper choices of bandwidths at the bootstrapping and Studentization steps.
We show further that calibration of the nominal coverage level by means of the iterated bootstrap succeeds in reducing the coverage error of the smoothed bootstrap percentile interval to the order \(O(n^{-2/3})\) and that of the smoothed bootstrap-\(t\) interval to \(O(n^{-58/57})\), provided that bandwidths are selected of appropriate orders.
Simulation results confirm our asymptotic findings, suggesting that the iterated smoothed bootstrap-\(t\) method yields the most accurate coverage. On the other hand, the iterated smoothed bootstrap percentile method interval has the advantage of being shorter and more stable than the bootstrap-\(t\) intervals.

MSC:

62G09 Nonparametric statistical resampling methods
65C60 Computational problems in statistics (MSC2010)
62G15 Nonparametric tolerance and confidence regions
62F40 Bootstrap, jackknife and other resampling methods
62G30 Order statistics; empirical distribution functions

References:

[1] Beran, R. (1987). Prepivoting to reduce level error of confidence sets. Biometrika 74 457–468. · Zbl 0663.62045 · doi:10.1093/biomet/74.3.457
[2] Beran, R. and Hall, P. (1993). Interpolated nonparametric prediction intervals and confidence intervals. J. Roy. Statist. Soc. Ser. B 55 643–652. · Zbl 0783.62037
[3] Bhattacharya, R. N. and Ghosh, J. K. (1978). On the validity of the formal Edgeworth expansion. Ann. Statist. 6 434–451. JSTOR: · Zbl 0396.62010 · doi:10.1214/aos/1176344134
[4] Chen, S. X. and Hall, P. (1993). Smoothed empirical likelihood confidence intervals for quantiles. Ann. Statist. 21 1166–1181. JSTOR: · Zbl 0786.62053 · doi:10.1214/aos/1176349256
[5] De Angelis, D., Hall, P. and Young, G. A. (1993). A note on coverage error of bootstrap confidence intervals for quantiles. Math. Proc. Cambridge Philos. Soc. 114 517–531. · Zbl 0799.62044 · doi:10.1017/S0305004100071802
[6] Falk, M. and Janas, D. (1992). Edgeworth expansions for Studentized and prepivoted sample quantiles. Statist. Probab. Lett. 14 13–24. · Zbl 0761.62016 · doi:10.1016/0167-7152(92)90205-J
[7] Hall, P. (1986). On the bootstrap and confidence intervals. Ann. Statist. 14 1431–1452. JSTOR: · Zbl 0611.62047 · doi:10.1214/aos/1176350168
[8] Hall, P. (1992). The Bootstrap and Edgeworth Expansion . Springer, New York. · Zbl 0744.62026
[9] Hall, P., DiCiccio, T. J. and Romano, J. P. (1989). On smoothing and the bootstrap. Ann. Statist. 17 692–704. JSTOR: · Zbl 0672.62051 · doi:10.1214/aos/1176347135
[10] Hall, P. and Martin, M. A. (1988). On bootstrap resampling and iteration. Biometrika 75 661–671. · Zbl 0659.62053 · doi:10.1093/biomet/75.4.661
[11] Hall, P. and Martin, M. A. (1989). A note on the accuracy of bootstrap percentile method confidence intervals for a quantile. Statist. Probab. Lett. 8 197–200. · Zbl 0676.62044 · doi:10.1016/0167-7152(89)90121-1
[12] Hall, P. and Martin, M. A. (1991). On the error incurred using the bootstrap variance estimate when constructing confidence intervals for quantiles. J. Multivariate Anal. 38 70–81. · Zbl 0728.62043 · doi:10.1016/0047-259X(91)90032-W
[13] Janas, D. (1993). A smoothed bootstrap estimator for a Studentized sample quantile. Ann. Inst. Statist. Math. 45 317–329. · Zbl 0778.62038 · doi:10.1007/BF00775817
[14] Jones, M. C. (1994). On kernel density derivative estimation. Comm. Statist. Theory Methods 23 2133–2139. · Zbl 0825.62208 · doi:10.1080/03610929408831377
[15] Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75 237–249. · Zbl 0641.62032 · doi:10.1093/biomet/75.2.237
[16] Polansky, A. M. and Schucany, W. R. (1997). Kernel smoothing to improve bootstrap confidence intervals. J. Roy. Statist. Soc. Ser. B 59 821–838. · Zbl 0886.62052 · doi:10.1111/1467-9868.00099
[17] Reiss, R.-D. (1989). Approximate Distributions of Order Statistics with Applications to Nonparametric Statistics . Springer, New York. · Zbl 0682.62009
[18] Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis . Chapman and Hall, London. · Zbl 0617.62042
[19] Zhou, Y. (1997). A note on quantile estimator of the perturbed empirical distribution function. Math. Appl. ( Wuhan ) 10 (4) 8–13. · Zbl 0936.62035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.