zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the Moore-Penrose generalized inverse matrix. (English) Zbl 1064.65031
Different methods for computing the Moore-Penrose inverse (MPI) matrix are reviewed. For the MPI of a matrix product, four mixed type reverse order laws are established. Some relevant numerical computations are given.

65F20Overdetermined systems, pseudoinverses (numerical linear algebra)
15A09Matrix inversion, generalized inverses
Full Text: DOI
[1] Penrose, R.: A generalized inverse for matrices. Proc. Cambridge philos. Soc 51, 406-413 (1955) · Zbl 0065.24603
[2] Penrose, R.: On the approximate solution of linear matrix equations. Proc. philos. Soc 52, 17-19 (1955) · Zbl 0070.12501
[3] Albert, A.: Conditions for positive and nonnegative definiteness in terms of pseudoinverses. SIAM J. Appl. math 17, 440-734 (1969) · Zbl 0265.15002
[4] Marsaglia, G.; Styan, G. P. H.: Equalities and inequalities in terms for ranks of matrices. Linear multilinear algebra 2, 269-292 (1974) · Zbl 0297.15003
[5] Schafer, R. D.: An introduction to non-associative algebras. (1966) · Zbl 0145.25601
[6] Tian, Y.: Matrix representation of octonions and their applications. Adv. appl. Clifford algebras 10, 61-90 (2000) · Zbl 0974.15012
[7] Ben Israel, A.; Grevile, T. N. E.: Generalized inverses: theory and applications. (1974)
[8] Cline, R. E.: Inverses of rank invariant powers of a matrix. SIAM J. Numer. anal 5, 182-197 (1968) · Zbl 0165.34602
[9] Mitra, S. K.; Radhakrishna, C. R.: Extensions of a duality theorem concerning g-inverses of matrices. Indian J. Stat 37, 439-445 (1975) · Zbl 0361.15005
[10] Pyle, L. D.: The weighted generalized inverse in nonlinear programming-active set selection using a variable metric generalization of the simplex algorithm. Lect. notes economics and Mathematica systems 174, 197-231 (1977)
[11] Lancaster, P.; Tismenetsky, M.: The theory of matrices with applications. (1985) · Zbl 0558.15001
[12] Zielke, G.: A survey of generalized matrix inverse. Banach center publication 13, 499-526 (1984) · Zbl 0572.65026
[13] Moore, E. H.: On the reciprocal of the general algebraic matrices. Bull. amer. Math. soc 26, 394-395 (1920)
[14] E.H. Moore, R.W. Barnard, General Analysis, Memories of the American Philosophical Society, I. American Philosophical Society, Philadelphia, Penssylvania, 1935, Part 1, pp. 197--209
[15] Siegmund-Schultze, R.: Eliakim Hastings Moore’s general analysis. Arch. hist. Exact sci 52, 51-89 (1998) · Zbl 0890.01013
[16] Archibald, R. C.: A semicentennial history of the American Mathematica society 1888--1938. 2 (1938) · Zbl 0019.24305
[17] Bliss, G. A.; Moore, E. H.: Bull. amer. Math. soc. 39, 831-838 (1933)
[18] Bliss, G. A.: The scientific work of eliakim Hastings Moore. Bull. amer. Math. soc 40, 501-514 (1934)
[19] K.H. Parshall, Eliakim Hastings Moore and the founding of a Mathematica community in America, Ann. Sci. 41 (1984) 313--333; Reprinted in A Century of Mathematics in America----Part II, in: Peter Duren et al. (Eds.), American Mathematical Society, Providence, RI, 1989, pp. 155--175
[20] K.H. Parshall, D.E. Rowe, in: J.J. Sylvester, F. Klein, E.H. Moore, The Emergence of the American Mathematical Research Community, 1876--1900, American Mathematical Society, Providence, RI, 1994
[21] D.J. Chalmers (Ed.), Symposium on Roger Penrose, Shadows of the Mind, PSYCHE: An interdisciplinary Journal of Research on Consciousness, vol. 2, 1995
[22] Hawking, S. H.; Penrose, R.: The nature of space and time. (2000) · Zbl 1187.83001
[23] Huggett, S. A.; Mason, L.; Tod, K. P.; Tsou, S. T.; Woodhouse, N. M. J.: The geometric universe: science, geometry, and the work of roger Penrose. (1998) · Zbl 0890.00046
[24] Penrose, R.: Shadows of the mind: A search for the missing science of consciousness. (1994) · Zbl 0847.00001
[25] Milovanovic, G. V.; Stanimirovic, P. S.: On Moore--Penrose inverse of block matrices and full rank factorization. Publication de l’institute mathematique 62, No. 76, 26-40 (1997)
[26] Noble, P.: A methods for computing the generalized inverse of a matrix. SIAM J. Numer. anal 3, 582-584 (1966) · Zbl 0147.13105
[27] Tewarson, R. P.: A direct method for generalized matrix inversion. SIAM J. Numer. anal 4, 499-507 (1967) · Zbl 0153.46102