×

zbMATH — the first resource for mathematics

Blocks in homogeneous effect algebras and MV-algebras. (English) Zbl 1065.06007
The author clarifies the relations between numerous notions in effect algebras: various definitions of compatibility, several conditions generalizing lattice-ordered effect algebras, etc. Particular attention is paid to the question of when an effect algebra can be covered by MV-algebras (blocks) and to the relation between \(m\)-completeness conditions for algebras, resp. their blocks. The paper is very useful because it supports orientation in numerous recent papers on related subjects.

MSC:
06C15 Complemented lattices, orthocomplemented lattices and posets
03G12 Quantum logic
06D35 MV-algebras
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] BERAN L.: Orthomodular Lattices - Algebraic Approach. Academia, Czechoslovak Academy of Sciences/D. Reidel Publishing Company, Praha/Dordrecht, 1984. · Zbl 0558.06008
[2] BUSCH P.-LAHTI P. J.-MITTELSTADT P.: The Quantum Theory of Measurement. Lecture Notes in Phys. New Ser. m Monogr. 31, Springer-Verlag, Berlin-Heidelberg-New York-London-Budapest, 1991.
[3] BUSCH P.-GRABOWSKI M.-LAHTI P. J.: Operational Quantum Physics. Springer-Verlag, Berlin, 1995. · Zbl 0863.60106
[4] CHANG C. C.: Algebraic analysis of many-valued logic. Trans. Amer. Math. Soc. 88 (1958), 467-490. · Zbl 0084.00704
[5] CHOVANEC F.-KÔPKA F.: \(D\)-lattices. Internat. J. Theoret. Phys. 34 (1995), 1297-1302. · Zbl 0840.03046
[6] CHOVANEC F.- KÔPKA F.: Boolean \(D\)-posets. Tatra Mt. Math. Publ. 10 (1997), 183-197. · Zbl 0915.03052
[7] DVUREČENSKIJ A.: On effect algebras that can be covered by \(MV\)-algebras. Internat. J. Theoret. Phys. 41 (2002), 221-229. · Zbl 1022.06005
[8] DVUREČENSKIJ A.-PULMANNOVÁ S.: New Trends in Quantum Structures. Kluwer Academic Publ./Ister Science, Dordrecht-Boston-London/Bratislava, 2000. · Zbl 0987.81005
[9] FOULIS D. J.-BENNETT M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1331-1362. · Zbl 1213.06004
[10] FOULIS D. J.-GREECHIE R.-RÜTTIMANN G.: Filters and supports in orthoalgebras. Internat. J. Theoret. Phys. 35 (1995), 789-802. · Zbl 0764.03026
[11] GIUNTINI R.-GRUEULING H.: Toward a formal language for unsharp properties. Found. Phys. 19 (1994), 769-780.
[12] JENČA G.: Blocks in homogeneous effect algebras. Bull. Austral. Math. Soc. 64 (2001), 81-98. · Zbl 0985.03063
[13] JENČA G.: A Cantor-Bernstein type theorem for effect algebras. Algebra Universalis 48 (2002), 399-411. · Zbl 1061.06020
[14] JENČA G.-PULMANNOVÁ S.: Quotients of partial abelian monoids and the Riesz decomposition property. Algebra Universalis 47 (2002), 443-477. · Zbl 1063.06011
[15] JENČA G.-RIEČANOVÁ Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80 (1999), 24-29.
[16] KALMBACH G.: Orthomodular Lattices. Academic Press, London-New York, 1983. · Zbl 0528.06012
[17] KÔPKA F.: Compatibility in \(D\)-posets. Internat. J. Theoret. Phys. 34 (1995), 1525-1531. · Zbl 0851.03020
[18] KÔPKA F.-CHOVANEC F.: \(D\)-posets. Math. Slovaca 44 (1994), 21-34. · Zbl 0789.03048
[19] LOCK P. L.-HARDEGREE G. M.: Connections among quantum logics: Part 2. Quantum event logic. Internat. J. Theoret. Phus. 24 (1985), 55-61. · Zbl 0592.03052
[20] PTÁK P.-PULMANNOVÁ S.: Orthomodular Structures as Quantum Logics. Kluwer Academic Publ., Dordrecht-Boston-London, 1991. · Zbl 0743.03039
[21] PULMANNOVÁ S.: On connections among some orthomodular structures. Demonstratio Math. 30 (1997), 313-328. · Zbl 0947.06004
[22] PULMANNOVÁ S.: Compatibility and decompositions of effects. J. Math. Phys. 43 (2002), 2817-2830. · Zbl 1059.81016
[23] PULMANNOVÁ S.: A note on observables on \(MV\)-algebras. Soft Computing 4 (2000), 45-48. · Zbl 1005.06006
[24] RAVINDRAN K.: On a Structure Theory of Effect Algebras. PhD Theses, Kansas State Univ., Manhattan, Kansas, 1996.
[25] RIEČANOVÁ Z.: A generalization of blocks for lattice effect algebras. Internat. J. Theoret. Phys. 39 (2000), 855-865.
[26] RIEČANOVÁ Z.: On order topological continuity of effect algebra operations. Contributions to General Algebra 12, Verlag Johannes Heyn, Klagenfurt, 2000, pp. 349-354. · Zbl 0960.03054
[27] RIEČANOVÁ Z.: Orthogonal sets in effect algebras. Demonstratio Math. 34 (2001), 525-531. · Zbl 0989.03071
[28] SARYMSAKOV T. A., al: Uporyadochennye algebry. FAN, Tashkent, 1983. · Zbl 0542.46001
[29] SCHRÖDER B.: On three notions of orthosummability in orthoalgebras. Internat. J. Theoret. Phys. 34 (1999), 3305-3313. · Zbl 0957.03061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.