Galois theory and torsion points on curves. (English) Zbl 1065.11045

Let \(K\) be a number field, \(\overline K\) an algebraic closure for \(K\) and \(X\) an algebraic curve over \(K\) of genus \(g\geq 2\). Assume that \(X\) is embedded in its Jacobian \(J\) via a \(K\)-rational Albanese map \(i: X\to J\). The Manin-Mumford conjecture states that the set \(X(\overline K)\cap J(\overline K)^{\text{tors}}\) is finite.
The first proof of this conjecture was provided by M. Raynaud [Invent. Math. 74, 207–233 (1983; Zbl 0564.14020) and some years later a second by R. F. Coleman [Duke Math J. 541, 615–640 (1987; Zbl 0626.14022)]. In case where \(X= X_0(p)\), with \(p\) a prime \(\geq 23\), the Coleman-Kaskel-Ribet conjecture states that the set of torsion points on \(X\) in the embedding \(i_\infty:X\to J\) is precisely \(\{0,\infty\}\cup H\), where \(H\) is the set of hyperelliptic branch points on \(X\) when \(X\) is hyperelliptic and \(p\neq 37\) and \(H=\varnothing\) otherwise.
In the paper under review, the authors deal with Galois-theoretic techniques for studying torsion points on curves and give new proofs of the above results.


11G30 Curves of arbitrary genus or genus \(\ne 1\) over global fields
11G18 Arithmetic aspects of modular and Shimura varieties
14H25 Arithmetic ground fields for curves
Full Text: DOI arXiv Numdam EuDML


[1] Baker, M., Torsion points on modular curves. Ph.D. thesis, University of California, Berkeley, 1999.
[2] Baker, M., Torsion points on modular curves. Invent. Math.140 (2000), 487-509. · Zbl 0972.11057
[3] Baker, M., Poonen, B., Torsion packets on curves. Compositio Math.127 (2001), 109-116. · Zbl 0987.14020
[4] Buium, A., Geometry of p-jets. Duke Math. J.82 (1996), 349-367. · Zbl 0882.14007
[5] Calegari, F., Almost rational torsion points on elliptic curves. International Math. Res. Notices10 (2001), 487-503. · Zbl 1002.14004
[6] Coleman, R.F., Ramified torsion points on curves. Duke Math J.54 (1987), 615-640. · Zbl 0626.14022
[7] Coleman, R.F., Kaskel, B., Ribet, K., Torsion points on X0(N). In Proceedings of a Symposia in Pure Mathematics, 66 (Part 1) Amer. Math. Soc., Providence, RI (1999), 27-49. · Zbl 0978.11027
[8] Coleman, R.F., Tamagawa, A., Tzermias, P., The cuspidal torsion packet on the Fermat curve. J. Reine Angew. Math.496 (1998), 73-81. · Zbl 0931.11024
[9] Csirik, J., On the kernel of the Eisenstein ideal. J. Number Theory92 (2002), 348-375. · Zbl 1004.11035
[10] Farkas, H.M., Kra, I., Riemann Surfaces (second edition). Graduate Texts in Mathematics, vol. 71, Springer-Verlag, Berlin and New York, 1992. · Zbl 0764.30001
[11] Grothendieck, A., SGA7 I, Exposé IX, , vol. 288, Springer-Verlag, Berlin and New York, 1972, 313-523.
[12] Hindry, M., Autour d’une conjecture de Serge Lang. Invent. Math.94 (1988), 575-603. · Zbl 0638.14026
[13] Kim, M., Ribet, K., Torsion points on modular curves and Galois theory, preprint.
[14] Lang, S., Division points on curves. Ann. Mat. Pura Appl.70 (1965), 229-234. · Zbl 0151.27401
[15] Lang, S., Fundamentals of Diophantine Geometry. Springer-Verlag, Berlin and New York, 1983. · Zbl 0528.14013
[16] Mazur, B., Modular curves and the Eisenstein ideal. Publ. Math. IHES47 (1977), 33-186. · Zbl 0394.14008
[17] Mazur, B., Rational isogenies of prime degree. Invent. Math.44 (1978), 129-162. · Zbl 0386.14009
[18] Mazur, B., Swinnerton-Dyer, P., Arithmetic of Weil curves. Invent. Math.25 (1974), 1-61. · Zbl 0281.14016
[19] Mcquillan, M., Division points on semi-abelian varieties. Invent. Math.120 (1995), 143-159. · Zbl 0848.14022
[20] Ogg, A.P., Hyperelliptic modular curves. Bull. Soc. Math. France102 (1974), 449-462. · Zbl 0314.10018
[21] Poonen, B., Mordell-Lang plus Bogomolov. Invent. Math.137 (1999), 413-425. · Zbl 0995.11040
[22] Poonen, B., Computing torsion points on curves, Experimental Math.10 (2001), no. 3, 449-465. · Zbl 1063.11017
[23] Raynaud, M., Courbes sur une variété abélienne et points de torsion. Invent. Math.71 (1983), 207-233. · Zbl 0564.14020
[24] Raynaud, M., Sous-variétés d’une variété abélienne et points de torsion, in Arithmetic and Geometry, Vol. I, Progr. Math.35, Birkhäuser, Boston, 1983, 327-352. · Zbl 0581.14031
[25] Ribet, K., Torsion points on Jo(N) and Galois representations, in “Arithmetic theory of elliptic curves” (Cetraro, 1997), 145-166, 1716, Springer-Verlag, Berlin and New York, 1999. · Zbl 1013.11024
[26] Ribet, K., On modular representations of Gal(Q/Q) arising from modular forms. Invent. Math.100 (1990), 431-476. · Zbl 0773.11039
[27] Rohrlich, D.E., Points at infinity on the Fermat curves. Invent. Math.39 (1977), 95-127. · Zbl 0357.14010
[28] Serre, J.-P., Sur les représentations modulaires de degré 2 de Gal(Q/Q). Duke Math. J.54 (1987), 179-230. · Zbl 0641.10026
[29] Tamagawa, A., Ramified torsion points on curves with ordinary semistable Jacobian varieties. Duke Math. J.106 (2001), 281-319. · Zbl 1010.14007
[30] Wintenberger, J.-P., Démonstration d’une conjecture de Lang dans des cas particuliers, preprint. · Zbl 1048.14008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.