×

Coherent sheaves on rational curves with simple double points and transversal intersections. (English) Zbl 1065.18009

The authors first review work of themselves and others [for example, Yu. A. Drozd and G.-M. Greuel, J. Algebra 246, 1–54 (2001; Zbl 1065.14041)] on the classification of indecomposable vector bundles on chains and cycles of projective lines (where adjacent curves in the configuration intersect transversally). Then they introduce (complicated!) combinatorial objects called strings and bands, and prove (Theorem 3.2) that there is a one-to-one correspondence between isomorphism classes of indecomposable objects in the derived category \(D^{-}(Coh_X)\) and equivalence classes of strings and bands, where \(X\) is a cycle of projective lines and \(Coh_X\) is the category of coherent sheaves on \(X\). Later this result is used to describe the various types of coherent sheaves on these varieties (including the case of a cycle of length one, which is the rational curve with one node).

MSC:

18E30 Derived categories, triangulated categories (MSC2010)
14H60 Vector bundles on curves and their moduli
16G20 Representations of quivers and partially ordered sets
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations

Citations:

Zbl 1065.14041
Full Text: DOI

References:

[1] M. F. Atiyah, Vector bundles over an elliptic curve , Proc. London Math. Soc. (3) 7 (1957), 414–452. · Zbl 0084.17305 · doi:10.1112/plms/s3-7.1.414
[2] H. Bass, Finitistic dimension and a homological generalization of semi-primary rings , Trans. Amer. Math. Soc. 95 (1960), 466–488. JSTOR: · Zbl 0094.02201 · doi:10.2307/1993568
[3] –. –. –. –., On the ubiquity of Gorenstein rings , Math. Z. 82 (1963), 8–28. · Zbl 0112.26604 · doi:10.1007/BF01112819
[4] V. M. Bondarenko, Bundles of semichained sets and their representations (in Russian), Akad. Nauk. Ukrain. SSR Inst. Mat. Preprint 1988 , no. 60, 32 pp. · Zbl 0791.06002
[5] –. –. –. –., Representations of bundles of semichained sets and their applications , St. Petersburg Math. J. 3 (1992), 973–996. · Zbl 0791.06002
[6] I. Burban, Yu. Drozd, and G.-M. Greuel, ”Vector bundles on singular projective curves” in Applications of Algebraic Geometry to Coding Theory, Physics and Computation (Eilat, Israel, 2001) , NATO Sci. Ser. II Math. Phys. Chem. 36 , Kluwer, Dordrecht, 2001, 1–15. · Zbl 0998.14016
[7] A. Dold, Zur Homotopietheorie der Kettenkomplexe , Math. Ann. 140 (1960), 278–298. · Zbl 0093.36903 · doi:10.1007/BF01360307
[8] Yu. [Ju.] A. Drozd, Matrix problems and categories of matrices (in Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 28 (1972), 144–153.
[9] –. –. –. –., Representations of commutative algebras , Funct. Anal. Appl. 6 (1972), 286–288. · Zbl 0206.00603
[10] –. –. –. –., Finite modules over purely Noetherian algebras , Proc. Steklov Inst. Math. 1991 , no. 4, 97–108. · Zbl 0762.16007
[11] Yu. A. Drozd and G.-M. Greuel, Tame and wild projective curves and classification of vector bundles , J. Algebra 246 (2001), 1–54. · Zbl 1065.14041 · doi:10.1006/jabr.2001.8934
[12] Yu. A. Drozd and V. V. Kirichenko, Finite-Dimensional Algebras , with an appendix by V. Dlab, Springer, Berlin, 1994. · Zbl 0816.16001
[13] R. Friedman, J. W. Morgan, and E. Witten, Vector bundles over elliptic fibrations , J. Algebraic Geom. 8 (1999), 279–401. · Zbl 0937.14004
[14] I. M. Gelfand, ”The cohomology of infinite dimensional Lie algebras: Some questions of integral geometry” in Actes du Congrès International des Mathématiciens, 1 (Nice, 1970) , Gauthier-Villars, Paris, 1971, 95–111. · Zbl 0239.58004
[15] I. M. Gelfand and V. A. Ponomarev, Indecomposable representations of the Lorentz group , Uspekhi Mat. Nauk 23 , no. 2 (1968), 3–60. · Zbl 0236.22012 · doi:10.1070/RM1968v023n02ABEH001237
[16] A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann , Amer. J. Math. 79 (1957), 121–138. JSTOR: · Zbl 0079.17001 · doi:10.2307/2372388
[17] R. Hartshorne, Algebraic Geometry , Grad. Texts in Math. 52 , Springer, New York, 1977. · Zbl 0367.14001
[18] M. Kontsevich, ”Homological algebra of mirror symmetry” in Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Zürich, 1994) , Birkhäuser, Basel, 1995, 120–139. · Zbl 0846.53021
[19] L. A. Nazarova and A. V. Roĭter, Finitely generated modules over a dyad of two local Dedekind rings, and finite groups which possess an abelian normal divisor of index \(p\) (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 65–89. · Zbl 0207.04803 · doi:10.1070/IM1969v003n01ABEH000748
[20] –. –. –. –., A certain problem of I. M. Gelfand , Funct. Anal. Appl. 7 (1973), 299–312. · Zbl 0269.54028
[21] L. A. Nazarova, A. V. Roĭter, V. V. Sergeĭčuk, and V. M. Bondarenko, Application of modules over a dyad to the classification of finite \(p\)-groups that have an abelian subgroup of index \(p\) and to the classification of pairs of mutually annihilating operators (in Russian), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 28 (1972), 69–92.
[22] T. Oda, Vector bundles on an elliptic curve , Nagoya Math. J. 43 (1971), 41–72. · Zbl 0201.53603
[23] A. Polishchuk, Classical Yang-Baxter equation and the \(A_\infty\)-constraint , Adv. Math. 168 (2002), 56–95. · Zbl 0999.22023 · doi:10.1006/aima.2001.2047
[24] A. Polishchuk and E. Zaslow, Categorical mirror symmetry: The elliptic curve , Adv. Theor. Math. Phys. 2 (1998), 443–470. · Zbl 0947.14017
[25] P. Seidel and R. Thomas, Braid group actions on derived categories of coherent sheaves , Duke Math. J. 108 (2001), 37–108. · Zbl 1092.14025 · doi:10.1215/S0012-7094-01-10812-0
[26] C. S. Seshadri, ”Degenerations of the moduli spaces of vector bundles on curves” in School on Algebraic Geometry (Trieste, Italy, 1999) , ICTP Lect. Notes 1 , Abdus Salam Int. Cent. Theoret. Phys., Trieste, Italy, 2000, 205–265. · Zbl 0986.14018
[27] T. Teodorescu, Semistable torsion-free sheaves over curves of arithmetic genus one , Ph.D. dissertation, Columbia University, New York, 1999.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.