×

Sharp power mean bounds for the Gaussian hypergeometric function. (English) Zbl 1065.33005

Sharp inequalities are established between the Gaussian hypergeometric function and the power mean. These results extend known inequalities involving the complete elliptic integral and the hypergeometric mean.

MSC:

33C20 Generalized hypergeometric series, \({}_pF_q\)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1972), Dover: Dover New York · Zbl 0515.33001
[2] Almkvist, G.; Berndt, B., Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, \(π\), and the Ladies Diary, Amer. Math. Monthly, 95, 585-608 (1988) · Zbl 0665.26007
[3] Alzer, H.; Qiu, S.-L., Monotonicity theorems and inequalities for the complete elliptic integrals, J. Comput. Appl. Math., 172, 289-312 (2004) · Zbl 1059.33029
[4] Anderson, G. D.; Vamanamurthy, M. K.; Vuorinen, M., Conformal Invariants, Inequalities, and Quasiconformal Maps (1997), Wiley: Wiley New York · Zbl 0767.30018
[5] Andrews, G. E.; Askey, R.; Roy, R., Special Functions (1999), Cambridge Univ. Press: Cambridge Univ. Press Cambridge
[6] Barnard, R. W.; Richards, K. C., A note on the hypergeometric mean value, Comput. Methods Function Theory, 1, 81-88 (2001) · Zbl 1009.33005
[7] Barnard, R. W.; Pearce, K.; Richards, K. C., A monotonicity property involving \(_3F_2\) and comparisons of classical approximations of elliptical arc length, SIAM J. Math. Anal., 32, 403-419 (2000) · Zbl 0983.33006
[8] Barnard, R. W.; Pearce, K.; Richards, K. C., An inequality involving the generalized hypergeometric function and the arc length of an ellipse, SIAM J. Math. Anal., 31, 693-699 (2000) · Zbl 0943.33002
[9] Beckenbach, E.; Bellman, R., Inequalities (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0128.27401
[10] Borwein, J.; Borwein, P., Inequalities for compound mean iterations with logarithmic asymptotes, J. Math. Anal. Appl., 177, 572-582 (1993) · Zbl 0783.33001
[11] Bullen, P. S.; Mitrinović, D. S.; Vasć, P. M., Means and Their Inequalities (1988), Reidel: Reidel Dordrecht · Zbl 0687.26005
[12] Carlson, B. C., Some inequalities for hypergeometric functions, Proc. Amer. Math. Soc., 16, 32-39 (1966) · Zbl 0137.26803
[13] Gradshteyn, I. S.; Ryzhik, I. M., (Jeffrey, A., Tables of Integrals and Series (1994), Academic Press: Academic Press San Diego) · Zbl 0918.65002
[14] Prudnikov, A. P.; Brychkov, Yu. A.; Marichev, O. I., Integrals and Series, vol. 3 (1990), Gordon and Breach: Gordon and Breach New York · Zbl 0967.00503
[15] Vuorinen, M., Hypergeometric functions in geometric function theory, (Srinivasa, K. R.; Jagannthan, R.; Van der Jeugy, G., Proc. Special Functions and Differential Equations (1998), Allied Publishers: Allied Publishers New Delhi) · Zbl 0948.30024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.