A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain. (English) Zbl 1065.35006

In the cone \(D = \{(x,t)\in \mathbb R^{n+1}\,\mid | x-x_0| <(t^{k+1} - t_0^{k+1})/(k+1)\}\) for the equation \[ Tu \equiv \frac{\partial^2 u}{\partial t^2} - t^{2k} \sum\limits_{j=1}^n \frac{\partial^2 u}{\partial x_j^2} = 0 \] the fundamental solution relative to the point \((x_0,t_0)\) is constructed. The integral distribution of the regular solution of the Cauchy problem for the equation \(Tu = f(x,t)\) with vanishing initial data \(u(x,0) = u_t(x,0) = 0\) is obtained. The estimate for the \(L_p\) norm of the solution of this problem by the \(L_q\) norm of the function \(f\) is established.


35A08 Fundamental solutions to PDEs
35L80 Degenerate hyperbolic equations
35L10 Second-order hyperbolic equations
35M10 PDEs of mixed type
Full Text: DOI


[1] Barros-Neto, J.; Gelfand, I. M., Fundamental solutions for the Tricomi operator, Duke Math. J., 98, 3, 465-483 (1999) · Zbl 0945.35063
[3] Barros-Neto, J.; Cardoso, F., Bessel integrals and fundamental solutions for a generalized Tricomi operator, J. Funct. Anal., 183, 2, 472-497 (2001) · Zbl 0990.35004
[5] Brenner, P., On \(L^p - L^q\) estimates for the wave-equation, Math. Zeitschrift, 145, 251-254 (1975) · Zbl 0321.35052
[6] Delache, S.; Leray, J., Calcul de la solution élémentaire de l’opérateur d’Euler-Poisson-Darboux et de l’opérateur de Tricomi-Clairaut, hyperbolique d’ordre 2, Bull. Soc. Math. France, 99, 313-336 (1971) · Zbl 0209.12701
[7] Diaz, J. B.; Weinberger, H. F., A solution of the singular initial value problem for the Euler-Poisson-Darboux equation, Proc. Amer. Math. Soc., 4, 703-715 (1953) · Zbl 0052.32401
[8] Frankl, F., On the problems of Chaplygin for mixed sub- and supersonic flows, Bull. Acad. Sci. URSS. Ser. Math., 9, 121-143 (1945) · Zbl 0063.01435
[9] Germain, P.; Bader, R., Solutions élémentaires de certaines équations aux dérivées partielles du type mixte, Bull. Soc. Math. France, 81, 145-174 (1953) · Zbl 0051.07503
[10] Kim; Jong Uhn, An \(L^p\) a priori estimate for the Tricomi equation in the upper half space, Trans. Amer. Math. Soc., 351, 11, 4611-4628 (1999) · Zbl 1034.35052
[11] Leray, J., Un prolongementa de la transformation de Laplace qui transforme la solution unitaires d’un opérateur hyperbolique en sa solution élémentaire. (Problème de Cauchy IV), Bull. Soc. Math. France, 90, 39-156 (1962) · Zbl 0185.34302
[12] Lupo, D.; Payne, K. R., Spectral bounds for Tricomi problems and application to semilinear existence and existence with uniqueness results, J. Differential Equations, 184, 1, 139-162 (2002) · Zbl 1157.35436
[13] Lupo, D.; Payne, K. R., Critical exponents for semilinear equations of mixed elliptic-hyperbolic and degenerate types, Comm. Pure Appl. Math., 56, 3, 403-424 (2003) · Zbl 1236.35011
[16] Tricomi, F., Sulle equazioni lineari alle derivate parziali di secondo ordine di tipo misto, Rend. Reale Accad. Lincei Cl. Sci. Fis. Mat. Natur (5), 14, 134-247 (1923) · JFM 49.0346.01
[17] Weinstein, A., The singular solutions and the Cauchy problem for generalized Tricomi equations, Comm. Pure Appl. Math., 7, 105-116 (1954) · Zbl 0056.09301
[18] Yagdjian, K., The Cauchy Problem for Hyperbolic Operators. Multiple Characteristics. Micro-Local Approach (1997), Akademie Verlag: Akademie Verlag Berlin · Zbl 0887.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.