zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Symmetry group methods for fundamental solutions. (English) Zbl 1065.35016
The authors use Lie symmetry group methods to find fundamental solutions for a class of partial differential equations of the form $u_t=xu_{xx}+f(x)u_x$, $x\geq 0$, i.e. to find the kernel function $p(t,x,y)$, such that $u(x,t)=\int_0^\infty\varphi(y)p(t,x,y)\,dy$ is a solution of the relevant Cauchy problem with $u(x,0)=\varphi(x)$.

MSC:
35A30Geometric theory for PDE, characteristics, transformations
35K55Nonlinear parabolic equations
58J70Invariance and symmetry properties
35K65Parabolic equations of degenerate type
35A08Fundamental solutions of PDE
WorldCat.org
Full Text: DOI
References:
[1] Bluman, G.; Kumei, S.: Symmetries and differential equations. (1989) · Zbl 0698.35001
[2] Craddock, M.: Symmetry groups of partial differential equations, separation of variables and direct integral theory. J. funct. Anal. 125, No. 2, 452-479 (1994) · Zbl 0809.35014
[3] Craddock, M.: The symmetry groups of linear partial differential equations and representation theory I. J. differential equations 116, No. 1, 202-247 (1995) · Zbl 0845.35020
[4] Craddock, M.: The symmetry groups of linear partial differential equations and representation theorythe Laplace and axially symmetric wave equations. J. differential equations 166, No. 1, 107-131 (2000) · Zbl 0962.35010
[5] Craddock, M.; Dooley, A.: Symmetry group methods for heat kernels. J. math. Phys. 42, No. 1, 390-418 (2001) · Zbl 1063.35516
[6] M. Craddock, E. Platen, Symmetry group methods for fundamental solutions and characteristic functions, Technical Report, University of Technology, Sydney, Research Paper 90, Quantitative Finance Research Group, University of Technology, Sydney, February 2003.
[7] Doetsch, G.: Introduction to the theory and application of the Laplace transformation. (1970) · Zbl 0202.12301
[8] Lamberton, D.; Lapeyre, B.: Introduction to stochastic calculus applied to finance. (1996) · Zbl 0949.60005
[9] Lie, S.: Über die integration durch bestimmte integrale von einer klasse linear partieller differentialgleichung. Arch. math. 6, 328-368 (1881) · Zbl 13.0298.01
[10] Lie, S.: Zur allgemeinen theorie der partiellen differentialgleichungen beliebeger ordnung. Leipz. berichte 47, 53-128 (1895) · Zbl 26.0402.01
[11] Lie, S.: Vorlesungen über differentialgleichungen mit bekannten infinitesimalen transformationen. (1912) · Zbl 43.0373.01
[12] Longstaff, F. A.: A nonlinear general equilibrium model of the term structure of interest rates. J. financial econom. 23, 195-224 (1989)
[13] W. Miller, Symmetry and Separation of Variables, Encylopedia of Mathematics and its Applications, vol. 4, Addison-Wesley, Reading MA, 1974. · Zbl 0285.33015
[14] P.J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, vol. 107, Springer, New York, 1993. · Zbl 0785.58003
[15] E. Platen, A Minimum Financial Market Model, Trends in Mathematics, Birkhauser, 2001, pp. 293 -- 301. · Zbl 1004.91029
[16] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, third ed., Grundlehiren der mathematischen Wissenschaften, vol. 293, Springer, Berlin, 1998. · Zbl 1087.60040
[17] Widder, D. V.: The Laplace transform. (1966) · Zbl 0148.10902