zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
LMI-based fuzzy stability and synchronization of Chen’s system. (English) Zbl 1065.37503
Summary: This Letter presents fuzzy model-based designs for Chen’s chaotic stability and synchronization. The T-S fuzzy model for Chen’s system is exactly derived. Then the asymptotic stability and synchronization are achieved by solving LMI’s design problem. The fuzzy controllers for stability and synchronization with full state variables and single state variable are got respectively by solving LMIs using Matlab. Numerical simulations are shown to verify the results.

37D45Strange attractors, chaotic dynamics
93D05Lyapunov and other classical stabilities of control systems
94C10Switching theory, application of Boolean algebra; Boolean functions
Full Text: DOI
[1] Park, C. -W.; Lee, C. -H.; Park, M.: Inform. sci.. 147, 245 (2002)
[2] Chen, L.; Chen, G.; Lee, Y. -W.: Inform. sci.. 121, 27 (1999)
[3] Lian, K. -Y.; Chiu, C. -S.; Chiang, T. -S.; Liu, P.: IEEE trans. Fuzzy systems. 9, No. 4, 539 (2001)
[4] Agiza, H. N.; Yassen, M. T.: Phys. lett. A. 278, 191 (2001)
[5] Guan, Z. -H.; Liao, R. -Q.; Zhou, F.; Wang, H. O.: Int. J. Bifur. chaos. 12, No. 5, 1191 (2002)
[6] Takagi, T.; Sugeno, M.: IEEE trans. Systems man cybernet.. 15, No. 1, 116 (1985) · Zbl 0576.93021
[7] Chen, G.; Uet, T.: Int. J. Bifur. chaos. 9, No. 7, 1465 (1999)
[8] Tanaka, K.; Wang, H. O.: Fuzzy control systems design and analysis: A linear matrix inequality approach. (2001)