Francaviglia, Mauro; Palese, Marcella; Vitolo, Raffaele The Hessian and Jacobi morphisms for higher order calculus of variations. (English) Zbl 1065.58010 Differ. Geom. Appl. 22, No. 1, 105-120 (2005). Summary: We formulate higher order variations of a Lagrangian in the geometric framework of jet prolongations of fibered manifolds. Our formalism applies to Lagrangians which depend on an arbitrary number of independent and dependent variables, together with higher order derivatives. In particular, we show that the second variation is equal (up to horizontal differentials) to the vertical differential of the Euler-Lagrange morphism which turns out to be self-adjoint along solutions of the Euler-Lagrange equations. These two objects, respectively, generalize in an invariant way the Hessian morphism and the Jacobi morphism (which is then self-adjoint along critical sections) of a given Lagrangian to the case of higher order Lagrangians. Some examples of classical Lagrangians are provided to illustrate our method. Cited in 9 Documents MSC: 58E30 Variational principles in infinite-dimensional spaces 58A20 Jets in global analysis Keywords:Fibered manifold; Jet space; Variational sequence; Second variation × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Anderson, I. M.; Duchamp, T., On the existence of global variational principles, Amer. Math. J., 102, 781-868 (1980) · Zbl 0454.58021 [2] Atiyah, M. F.; Bott, R., The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, 308, 1505, 523-615 (1983) · Zbl 0509.14014 [3] Blancheton, É., Les équation aux variations de la relativité générale, Publ. Sci. Univ. Alger Sér. A, 9, 31-116 (1962) · Zbl 0133.22703 [4] Bocharov, A. V.; Chetverikov, V. N.; Duzhin, S. V.; Khor’kova, N. G.; Krasil’shchik, I. S.; Samokhin, A. V.; Torkhov, Yu. N.; Verbovetsky, A. M.; Vinogradov, A. M., (Krasil’shchik, I. S.; Vinogradov, A. M., Symmetries and Conservation Laws for Differential Equations of Mathematical Physics (1999), Amer. Math. Soc.) · Zbl 0911.00032 [5] Bourguignon, J. P., Yang-Mills theory: the differential geometric side, (Differential Geometry (Lyngby, 1985). Differential Geometry (Lyngby, 1985), Lecture Notes in Math., vol. 1263 (1987), Springer: Springer Berlin), 13-54 · Zbl 0621.53028 [6] Bryant, R.; Griffiths, P.; Grossman, D., Exterior differential systems and Euler-Lagrange partial differential equations (2002), Chicago Lectures in Mathematics, submitted for publication [7] Casciaro, B.; Francaviglia, M., Covariant second variation for first order Lagrangians on fibered manifolds. I: Generalized Jacobi fields, Rend. Matem. Univ. Roma, VII, 16, 233-264 (1996) · Zbl 0869.58008 [8] Casciaro, B.; Francaviglia, M., A new variational characterization of Jacobi fields along geodesics, Ann. Mat. Pura Appl., CLXXII, IV, 219-228 (1997) · Zbl 0936.53029 [9] Casciaro, B.; Francaviglia, M.; Tapia, V., On the variational characterization of generalized Jacobi equations, (Janyška, J.; Kolář, I.; Slovák, J., Proc. Diff. Geom. Appl., Brno, 1995 (1996), Masaryk University: Masaryk University Brno), 353-372 · Zbl 0876.70013 [10] Crampin, M., The second variation formula in Lagrange and Finsler geometry, Houston J. Math., 26, 2, 255-275 (2000) · Zbl 0991.53013 [11] Francaviglia, M.; Palese, M., Second order variations in variational sequences, (Kozma, L.; etal., Steps in Differential Geometry, Proc. Colloq. on Diff. Geom., 25-30 July 2000, Debrecen, Hungary (2001)), 119-130 · Zbl 0977.58019 [12] Francaviglia, M.; Palese, M., Generalized Jacobi morphisms in variational sequences, Proc. XXI Winter School Geometry and Physics, Srni, 2001. Proc. XXI Winter School Geometry and Physics, Srni, 2001, Rend. Circ. Matem. di Palermo. Serie II (Suppl.), 69, 195-208 (2002) · Zbl 1028.58022 [13] Francaviglia, M.; Palese, M.; Vitolo, R., Symmetries in finite order variational sequences, Czech. Math. J., 52, 127, 197-213 (2002) · Zbl 1006.58014 [14] Giaquinta, M.; Hildebrandt, S., Calculus of Variations I (1996), Springer · Zbl 0853.49002 [15] Goldschmidt, H.; Sternberg, S., The Hamilton-Cartan formalism in the calculus of variations, Ann. Inst. Fourier, Grenoble, 23, 1, 203-267 (1973) · Zbl 0243.49011 [16] Griffiths, P. A., Exterior Differential Systems and the Calculus of Variations (1983), Birkhauser · Zbl 0512.49003 [17] Henneaux, M.; Teitelboim, C., Quantization of Gauge Systems (1992), Princeton University Press · Zbl 0838.53053 [18] Kolář, I., Lie derivatives and higher order Lagrangians, (Kowalski, O., Proc. Diff. Geom. Appl. (1981), Un. Karlova: Un. Karlova Praha), 117-123 · Zbl 0491.58005 [19] Kolář, I., A geometrical version of the higher order Hamilton formalism in fibred manifolds, J. Geom. Phys., 1, 2, 127-137 (1984) · Zbl 0595.58016 [20] Kolář, I.; Michor, P. W.; Slovák, J., Natural Operations in Differential Geometry (1993), Springer · Zbl 0782.53013 [21] Kolář, I.; Vitolo, R., On the Helmholtz operator for Euler morphisms, Math. Proc. Cambridge Phil. Soc., 135, 2, 277-290 (2003) · Zbl 1048.58012 [22] Krupka, D., Some geometric aspects of variational problems in fibred manifolds, (Folia Fac. Sci. Nat. UJEP Brunensis, vol. 14 (1973), J.E. Purkyně Univ.: J.E. Purkyně Univ. Brno), 1-65 [23] Krupka, D., Variational sequences on finite order jet spaces, (Janyška, J.; Krupka, D., Proc. Diff. Geom. Appl., Brno, 1989 (1990), World Scientific: World Scientific Singapore), 236-254 · Zbl 0813.58014 [24] Kuperschmidt, B. A., Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalism, (Geometric Methods in Mathematical Physics. Geometric Methods in Mathematical Physics, Lecture Notes in Math., vol. 775 (1980), Springer: Springer Berlin), 162-218 · Zbl 0439.58016 [25] Mangiarotti, L.; Modugno, M., Fibered spaces, jet spaces and connections for field theories, (Proc. Int. Meet. on Geom. and Phys. (1983), Pitagora Editrice: Pitagora Editrice Bologna), 135-165 · Zbl 0539.53026 [26] Olver, P. J., Applications of Lie Groups to Differential Equations, GTM, vol. 107 (1993), Springer · Zbl 0785.58003 [27] Palais, R., Foundations of Global Non-linear Analysis (1968), Benjamin · Zbl 0164.11102 [28] M. Palese, Geometric foundations of the calculus of variations, Variational sequences, symmetries and Jacobi morphisms, Ph.D. Thesis, University of Torino 2000; M. Palese, Geometric foundations of the calculus of variations, Variational sequences, symmetries and Jacobi morphisms, Ph.D. Thesis, University of Torino 2000 [29] Palese, M.; Vitolo, R., On a class of polynomial Lagrangians, Proc. of the Winter School ‘Geometry and Physics’, Srni (Czech Rep.) 2000. Proc. of the Winter School ‘Geometry and Physics’, Srni (Czech Rep.) 2000, Rend. Mat. Palermo Serie II (Suppl.), 66, 147-159 (2001) · Zbl 1002.58003 [30] M. Palese, E. Winterroth, Global generalized Bianchi identities for invariant variational problems on gauge-natural bundles, Arch. Math. (Brno), submitted for publication; M. Palese, E. Winterroth, Global generalized Bianchi identities for invariant variational problems on gauge-natural bundles, Arch. Math. (Brno), submitted for publication · Zbl 1112.58005 [31] Pommaret, J. F., Einstein equations do not admit a generic potential, (Janyška, J.; Kolář, I.; Slovák, J., Proc. Diff. Geom. Appl., Brno, 1995 (1996), Masaryk University: Masaryk University Brno), 449-454 · Zbl 0858.35126 [32] Ross, M., The second variation of nonorientable minimal submanifolds, Trans. Amer. Math. Soc., 349, 8, 3093-3104 (1997) · Zbl 0890.53047 [33] Saunders, D. J., The Geometry of Jet Bundles (1989), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0665.58002 [34] Takens, F., A global version of the inverse problem of the calculus of variations, J. Diff. Geom., 14, 543-562 (1979) · Zbl 0463.58015 [35] Tulczyjew, W. M., The Lagrange complex, Bull. Soc. Math. France, 105, 419-431 (1977) · Zbl 0408.58020 [36] Vinogradov, A. M., On the algebro-geometric foundations of Lagrangian field theory, Soviet Math. Dokl., 18, 1200-1204 (1977) · Zbl 0403.58005 [37] Vinogradov, A. M., A spectral sequence associated with a non-linear differential equation, and algebro-geometric foundations of Lagrangian field theory with constraints, Soviet Math. Dokl., 19, 144-148 (1978) · Zbl 0406.58015 [38] Vinogradov, A. M., The \(C\)-spectral sequence, Lagrangian formalism and conservation laws I and II, J. Math. Anal. Appl., 100, 1, 1-129 (1984) · Zbl 0548.58015 [39] Vitolo, R., Finite order Lagrangian bicomplexes, Math. Proc. Cambridge Phil. Soc., 125, 1, 321-333 (1999) · Zbl 0927.58008 [40] Vitolo, R., Finite order formulation of Vinogradov’s \(C\)-spectral sequence, Acta Appl. Math., 70, 1-2, 133-154 (2002) · Zbl 1008.58006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.