Limit theorems for continuous-time random walks with infinite mean waiting times. (English) Zbl 1065.60042

Let \(\{D(x), x\geq 0\}\) be a strictly stable subordinator with index \(\beta \in (0,1)\), and \(\{E(t), t\geq 0\}\) be the corresponding hitting time process. The authors prove (Proposition 3.1) that the process \(E(t)\) is self-similar with exponent \(\beta\). They also point out (Corollaries 3.1–3.3, Remark 3.1) some distributional and moment properties of \(E(t)\) and verify that \(E(t)\) has neither stationary nor independent increments.
Let \(\{N(t), t\geq 0\}\) be a standard renewal process whose inter-arrival time belongs to the domain of attraction of a positive strictly stable law; \(Y_1, Y_2,\ldots\) be i.i.d. random vectors, which are independent of \(N(t)\). The process \(X_t:=Y_1+\ldots+Y_{N(t)}, t\geq 0\), is called a continuous-time random walk. Let \(A(t)\) be an operator Lévy motion. The authors prove (Theorem 3.2 and Corollary 3.4) that all finite-dimensional distributions of properly scaled and normalized process \(N(t)\) converge to finite-dimensional distributions of \(E(t)\). The convergence is also established in the Skorokhod space equipped with the \(J_1\)-topology. Theorem 4.2 contains a similar result for \(X_t\). There the Skorokhod space is equipped with the \(M_1\)-topology, and the limiting process is \(\{M(t):=A(E(t)), t\geq 0\}\). Further (Corollaries 4.1–4.3, Theorem 4.3) the authors investigate properties of the process \(M(t)\). In particular, they check that the process is operator self-similar with exponent \(\beta E\), where \(E\) is a matrix with real entries, but not operator stable; it does not have stationary increments. Finally, Theorem 5.1 states that the density of \(M(t)\) solves a fractional kinetic equation which is a generalization of a fractional partial differential equation for Hamiltonian chaos.


60G50 Sums of independent random variables; random walks
60K40 Other physical applications of random processes
Full Text: DOI Link


[1] Baeumer, B. and Meerschaert, M. M. (2001). Stochastic solutions for fractional Cauchy problems. Fractional Calculus Appl. Anal. 4, 481–500. · Zbl 1057.35102
[2] Barkai, E., Metzler, R. and Klafter, J. (2000). From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev. E 61, 132–138.
[3] Benson, D. A., Wheatcraft, S. W. and Meerschaert, M. M. (2000). Application of a fractional advection–dispersion equation. Water Resources Res. 36, 1403–1412.
[4] Benson, D. A., Wheatcraft, S. W. and Meerschaert, M. M. (2000). The fractional-order governing equation of Lévy motion. Water Resources Res. 36, 1413–1424.
[5] Benson, D. A., Schumer, R., Meerschaert, M. M. and Wheatcraft, S. W. (2001). Fractional dispersion, Lévy motion, and the MADE tracer tests. Transport Porous Media 42, 211–240.
[6] Bertoin, J. (1996). Lévy Processes . Cambridge University Press. · Zbl 0861.60003
[7] Billingsley, P. (1968). Convergence of Probability Measures . John Wiley, New York. · Zbl 0172.21201
[8] Bingham, N. H. (1971). Limit theorems for occupation times of Markov processes. Z. Warscheinlichkeitsth. 17, 1–22. · Zbl 0194.49503
[9] Blumen, A., Zumofen, G. and Klafter, J. (1989). Transport aspects in anomalous diffusion: Lévy walks. Phys Rev. A 40, 3964–3973.
[10] Bondesson, L., Kristiansen, G. and Steutel, F. (1996). Infinite divisibility of random variables and their integer parts. Statist. Prob. Lett. 28, 271–278. · Zbl 0861.60025
[11] Chaves, A. S. (1998). A fractional diffusion equation to describe Lévy flights. Phys. Lett. A 239, 13–16. · Zbl 1026.82524
[12] Embrechts, P. and Maejima, M. (2002). Selfsimilar Processes . Princeton University Press. · Zbl 1008.60003
[13] Feller, W. (1971). An Introduction to Probability Theory and Its Applications , Vol. 2, 2nd edn. John Wiley, New York. · Zbl 0219.60003
[14] Getoor, R. K. (1961). First passage times for symmetric stable processes in space. Trans. Am. Math. Soc. 101, 75–90. · Zbl 0104.11203
[15] Gihman, I. I. and Skorohod, A. V. (1974). The Theory of Stochastic Processes. I . Springer, New York. · Zbl 0291.60019
[16] Hille, E. and Phillips, R. S. (1957). Functional Analysis and Semi-Groups (Amer. Math. Soc. Coll. Pub. 31 ). American Mathematical Society, Providence, RI. · Zbl 0078.10004
[17] Jurek, Z. J. and Mason, J. D. (1993). Operator-Limit Distributions in Probability Theory . John Wiley, New York. · Zbl 0850.60003
[18] Klafter, J., Blumen, A. and Shlesinger, M. F. (1987). Stochastic pathways to anomalous diffusion. Phys. Rev. A 35, 3081–3085.
[19] Kotulski, M. (1995). Asymptotic distributions of the continuous time random walks: a probabilistic approach. J. Statist. Phys. 81, 777–792. · Zbl 1107.60318
[20] Kotulski, M. and Weron, K. (1996). Random walk approach to relaxation in disordered systems. In Athens Conference on Applied Probability and Time Series Analysis (Lect. Notes Statist. 114 ), Vol. 1, Springer, New York, pp. 379–388. · Zbl 0858.60063
[21] Kozubowski, T. J. (1999). Geometric stable laws: estimation and applications. Math. Comput. Modelling 29, 241–253. · Zbl 0990.62022
[22] Kozubowski, T. J. and Panorska, A. K. (1996). On moments and tail behavior of \(\nu\)-stable random variables. Statist. Prob. Lett. 29, 307–315. · Zbl 0905.60017
[23] Kozubowski, T. J. and Panorska, A. K. (1998). Weak limits for multivariate random sums. J. Multivariate Analysis 67, 398–413. · Zbl 0928.60013
[24] Kozubowski, T. J. and Panorska, A. K. (1999). Multivariate geometric stable distributions in financial applications. Math. Comput. Modelling 29, 83–92. · Zbl 1098.62587
[25] Kozubowski, T. J. and Rachev, S. T. (1999). Multivariate geometric stable laws. J. Comput. Analysis Appl. 1, 349–385. · Zbl 0964.62039
[26] Meerschaert, M. M. and Scheffler, H. P. (2001). Limit Distributions for Sums of Independent Random Vectors . John Wiley, New York. · Zbl 0990.60003
[27] Meerschaert, M. M., Benson, D. and Baeumer, B. (1999). Multidimensional advection and fractional dispersion. Phys. Rev. E 59, 5026–5028.
[28] Meerschaert, M. M., Benson, D. and Baeumer, B. (2001). Operator Lévy motion and multiscaling anomalous diffusion. Phys. Rev. E 63, 1112–1117.
[29] Metzler, R. and Klafter, J. (2000). The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77. · Zbl 0984.82032
[30] Montroll, E. W. and Weiss, G. H. (1965). Random walks on lattices. II. J. Math. Phys. 6, 167–181. · Zbl 1342.60067
[31] Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations (Appl. Math. Sci. 44 ). Springer, New York. · Zbl 0516.47023
[32] Port, S. C. (1967). Hitting times for transient stable processes. Pacific J. Math. 21, 161–165. · Zbl 0154.18904
[33] Saichev, A. I. and Zaslavsky, G. M. (1997). Fractional kinetic equations: solutions and applications. Chaos 7, 753–764. · Zbl 0933.37029
[34] Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes . Chapman and Hall, New York. · Zbl 0925.60027
[35] Samko, S., Kilbas, A. and Marichev, O. (1993). Fractional Integrals and Derivatives: Theory and Applications . Gordon and Breach, London. · Zbl 0818.26003
[36] Sato, K. I. (1999). Lévy Processes and Infinitely Divisible Distributions . Cambridge University Press. · Zbl 0973.60001
[37] Scher, H. and Lax, M. (1973). Stochastic transport in a disordered solid. I. Theory. Phys. Rev. B 7, 4491–4502.
[38] Seneta, E. (1976). Regularly Varying Functions (Lecture Notes Math. 508 ). Springer, Berlin. · Zbl 0324.26002
[39] Shlesinger, M., Klafter, J. and Wong, Y. M. (1982). Random walks with infinite spatial and temporal moments. J. Statist. Phys. 27, 499–512. · Zbl 0521.60080
[40] Shlesinger, M., Zaslavsky, G. and Frisch, U. (eds) (1995). Lévy Flights and Related Topics in Physics (Proc. Internat. Workshop, Nice, June 1994; Lecture Notes Phys. 450 ). Springer, Berlin.
[41] Stone, C. (1963). Weak convergence of stochastic processes defined on semi-infinite time intervals. Proc. Am. Math. Soc. 14, 694–696. · Zbl 0116.35602
[42] Uchaikin, V. V. and Zolotarev, V. M. (1999). Chance and Stability. Stable Distributions and Their Applications. VSP, Utrecht. · Zbl 0944.60006
[43] Whitt, W. (2002). Stochastic-Process Limits . Springer, New York. · Zbl 0993.60001
[44] Whitt, W. (1980). Some useful functions for functional limit theorems. Math. Operat. Res. 5, 67–85. · Zbl 0428.60010
[45] Zaslavsky, G. M. (1994). Fractional kinetic equation for Hamiltonian chaos. Chaotic advection, tracer dynamics and turbulent dispersion. Physica D 76, 110–122. · Zbl 1194.37163
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.