×

Flows, coalescence and noise. (English) Zbl 1065.60066

Ann. Probab. 32, No. 2, 1247-1315 (2004); correction ibid. 48, No. 3, 1592-1595 (2020).
This is a systematic presentation of the description of stationary random motion with independent increments, with a particular attention on the “coalescent” case, that is, the probability of hitting of two moving points starting from two different points is positive and these two moving points after hitting cannot separate. To describe the motion of \(n\) moving points on a metric space \(M\), the authors introduce a compatible family of Feller semigroups acting on the continuous functions on \(M^n\) \((n= 1,2,\dots)\), convolution semigroups of probability measures on the mapping on \(M\), stochastic flow of mappings and stochastic flow of kernels. Thus, a coalescing flow also can be described by a compatible family of Feller semigroups (Th. 4.1). They observe also that the probability measure defined by the mapping of a coalesing flow is atomic (Prop. 4.1). The relations between the motion of \(n\) moving points described by a compatible family of Feller semigroups and the stochastic differential equations and the associated diffusion are described. Finally, they study a Brownian motion on a two-point symmetric space with an isotropic covariant funcion, for which various types of flow (with respect to the probability of hitting and that of separation after hitting) can be observed.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Airault, H. and Ren, J. (2002). Modulus of continuity of the canonic Brownian motion “on the group of diffeomorphisms of the circle.” J. Funct. Anal. 196 395–426. · Zbl 1023.60051
[2] Arratia, R. A. (1979). Brownian motion on the line. Ph.D dissertation, Univ. Wisconsin, Madison.
[3] Baxendale, P. (1984). Brownian motion in the diffeomorphism group. I. Compositio Math. 53 19–50. · Zbl 0547.58041
[4] Bernard, D., Gawedzki, K. and Kupiainen, A. (1998). Slow modes in passive advection. J. Statist. Phys. 90 519–569. · Zbl 0932.76030
[5] Billingsley, P. (1968). Convergence of Probability Measures . Wiley, New York. · Zbl 0172.21201
[6] Billingsley, P. (1986). Probability and Measure , 2nd. ed. Wiley, New York. · Zbl 0649.60001
[7] Blumenthal, R. M. and Getoor, R. K. (1968). Markov Processes and Potential Theory . Academic Press, New York. · Zbl 0169.49204
[8] Bourbaki, N. (1974). Topologie Générale ( éléments de mathématique ). Hermann, Paris. · Zbl 0337.54001
[9] Darling, R. W. R. (1987). Constructing Nonhomeomorphic Stochastic Flows . Amer. Math. Soc. Providence, RI. · Zbl 0629.60078
[10] , W. and Vanden-Eijnden, E. (2001). Turbulent Prandtl number effect on passive scalar advection. Advances in nonlinear mathematics and science. Phys. D 152/153 636–645. · Zbl 0986.76025
[11] , W., and Vanden-Eijnden, E. (2000). Generalized flows, intrinsic stochasticity, and turbulent transport. Proc. Natl. Acad. Sci. USA 97 8200–8205. · Zbl 0967.76038
[12] Fang, S. (2002). Canonical Brownian motion on the diffeomorphism group of the circle. J. Funct. Anal. 196 162–179. · Zbl 1023.60050
[13] Gawedzki, K. and Kupiainen, A. (1996). Universality in Turbulence : An Exactly Solvable Model . Lecture Notes in Phys. 469 . Springer, New York. · Zbl 0919.60094
[14] Gawedzki, K. and Vergassola, M. (2000). Phase transition in the passive scalar advection. Phys. D. 138 63–90. · Zbl 0967.76041
[15] Harris, T. E. (1984). Coalescing and noncoalescing stochastic flows in \(\RR^1\). Stochastic Process. Appl. 17 187–210. · Zbl 0536.60016
[16] Helgason, S. (1980). The Radon Transform . Birkhaüser, Boston. · Zbl 0453.43011
[17] Ikeda, N. and Watanabe, S. (1988). Stochastic Differential Equations and Diffusion Processes , 2nd ed. North-Holland, Amsterdam. · Zbl 0684.60040
[18] Kallenberg, O. (1997). Foundations of Modern Probability . Springer, Berlin. · Zbl 0892.60001
[19] Krylov, N. V. and Veretennikov, A. Ju. (1976). Explicit formulae for the solutions of the stochastic differential equations. Math. USSR Sb. 29 239–256. · Zbl 0353.60059
[20] Kunita, H. (1990). Stochastic Flows and Stochastic Differential Equations . Cambridge Univ. Press. · Zbl 0743.60052
[21] Le Jan, Y. (1985). On isotropic Brownian motions. Z. Wahrsch. Verw. Gebiete 70 609–620. · Zbl 0576.60072
[22] Le Jan, Y. and Raimond, O. (1998). Solutions statistiques fortes des équations différentielles stochastiques. C. R. Acad. Sci. Paris Sér. I Math. 327 893–896. · Zbl 0927.60064
[23] Le Jan, Y. and Raimond, O. (2002). Integration of Brownian vector fields. Ann. Probab. 30 826–873. · Zbl 1037.60061
[24] Le Jan, Y. and Raimond, O. (2002). Sticky flows on the circle. Available at
[25] Le Jan, Y. and Raimond, O. (2003). The noise of a Brownian sticky flow is black. Available at
[26] Le Jan, Y. and Raimond, O. (2004). Sticky flows on the circle and their noises. Probab. Theory Related Fields . · Zbl 1070.60089
[27] Le Jan, Y. and Watanabe, S. (1984). Stochastic flows of diffeomorphisms. In Stochastic Analysis (K. Itô, ed.) 307–332. North-Holland, Amsterdam. · Zbl 0552.60062
[28] Ma, Z. M. and Xiang, K. N. (2001). Superprocesses of stochastic flows. Ann. Probab . 29 317–343. · Zbl 1015.60063
[29] Maisonneuve, B. (1972). Topologies du type de Skorohod. Séminaire de Probabilités VI. Lecture Notes in Math. 258 113–117. Springer, Berlin. · Zbl 0241.60075
[30] Malliavin, P. (1999). The canonic diffusion above the diffeomorphism group of the circle. C. R. Acad. Sci. Paris Sér. I Math. 329 325–329. · Zbl 1006.60073
[31] McKean, H. P. (1997). Stochastic Integrals . Academic Press, New York. · Zbl 0191.46603
[32] Monin, A. S. and Yaglom, A. M. (1975). Statistical Fluid Mechanics 2 . MIT Press.
[33] Neveu, J. (1968). Processus aléatoires gaussiens . Presses de l’Université de Montréal. · Zbl 0192.54701
[34] Parthasarthy, K. R. (1967). Probability Measures on Metric Spaces . Academic Press, New York. · Zbl 0153.19101
[35] Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures Algorithms 9 223–252. · Zbl 0859.60067
[36] Raimond, O. (1995). Flots browniens isotropes. Thèse.
[37] Raimond, O. (1999). Flots browniens isotropes sur la sphère. Ann. Inst. H. Poincaré 35 313–354. · Zbl 0924.60028
[38] Rogers, L. C. G. and Williams, D. (1994). Diffusions , Markov Processes and Martingales . Wiley, New York. · Zbl 0826.60002
[39] Simon, B. (1974). The \(P(\p)_2\) Euclidean ( Quantum ) Field Theory . Princeton Univ. Press. · Zbl 1175.81146
[40] Tsirelson, B. (1997). Triple points: From non-Brownian filtrations to harmonic measures. Geom. Funct. Anal. 7 1096–1142. · Zbl 0902.31004
[41] Tsirelson, B. (1998). Unitary Brownian motions are linearizable. Available at math.PR/9806112. MSRI Preprint No. 1998-027.
[42] Tsirelson, B. (1998). Within and beyond the reach of Brownian innovation. In Proceedings of the International Congress of Mathematicians (Berlin 1998) 3 311–320. IMU, Princeton, NJ. · Zbl 0907.60053
[43] Tsirelson, B. (2003). Scaling limit, noise, stability. Available at · Zbl 1056.60009
[44] Warren, J. (1999). Splitting: Tanaka’s SDE revisited. Available at
[45] Watanabe, S. (2000). The stochastic flow and the noise associated to Tanaka’s stochastic differential equation. Ukraïn. Mat. Zh. 52 1176–1193. [Translation in Ukrainian Math. J. 52 (2000) 1346–1365.] · Zbl 0971.60062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.