×

Efficient and adaptive nonparametric test for the two-sample problem. (English) Zbl 1065.62079

Summary: The notion of efficient test for a Euclidean parameter in a semiparametric model was introduced by C. Stein [Proc. Third Berkeley Symp. Math. Stat. Probab. 1, 187-195 (1956; Zbl 0074.34801)]. Such tests are locally most powerful for a wide class of infinite-dimensional nuisance parameters. The first formal application of this notion to a suitably parametrized two-sample problem was provided by J. Hájek [Ann. Math. Stat. 33, 1124–1147 (1962; Zbl 0133.42001)]. However, this and subsequent solutions appear to be not well-suited for practical applications.
This article aims to show that an adaptive two-sample test introduced recently by A. Janic-Wróblewska and T. Ledwina [Scand. J. Stat. 27, 281–297 (2000; Zbl 0955.62045)] is locally most powerful under a more realistic setting.

MSC:

62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference
Full Text: DOI

References:

[1] Albers, W., Kallenberg, W. C. M. and Martini, F. (2001). Data driven rank tests for classes of tail alternatives. J. Amer. Statist. Assoc. 96 685–696. · Zbl 1018.62036 · doi:10.1198/016214501753168343
[2] Bajorski, P. (1992). Max-type rank tests in the two-sample problem. Zastos. Mat . 21 371–385. · Zbl 0770.62035
[3] Barron, A. R. and Sheu, C. (1991). Approximation of density functions by sequences of exponential families. Ann. Statist. 19 1347–1369. JSTOR: · Zbl 0739.62027 · doi:10.1214/aos/1176348252
[4] Behnen, K. (1975). The Randles–Hogg test and an alternative proposal. Comm. Statist . 4 203–238. · Zbl 0299.62025 · doi:10.1080/03610927508827240
[5] Behnen, K. (1981). Nichtparametrische Statistik: Zweistichproben Rangtests. Z. Angew. Math. Mech . 61 T203–T212. · Zbl 0477.62027
[6] Behnen, K. and Neuhaus, G. (1983). Galton’s test as a linear rank test with estimated scores and its local asymptotic efficiency. Ann. Statist. 11 588–599. JSTOR: · Zbl 0531.62042 · doi:10.1214/aos/1176346164
[7] Behnen, K. and Neuhaus, G. (1989). Rank Tests with Estimated Scores and Their Application . Teubner, Stuttgart. · Zbl 0692.62041
[8] Bickel, P. J. (1974). Edgeworth expansions in nonparametric statistics. Ann. Statist. 2 1–20. JSTOR: · Zbl 0284.62018 · doi:10.1214/aos/1176342609
[9] Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993). Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins Univ. Press. · Zbl 0786.62001
[10] Book, S. A. (1976). The Cramér–Feller–Petrov large deviation theorem for triangular arrays. Technical report, Dept. Mathematics, California State College, Dominguez Hills.
[11] Eubank, R. L., LaRiccia, V. N. and Rosenstein, R. B. (1987). Test statistics derived as components of Pearson’s phi-squared distance measure. J. Amer. Statist. Assoc. 82 816–825. · Zbl 0664.62044 · doi:10.2307/2288791
[12] Fan, J. (1996). Test of significance based on wavelet thresholding and Neyman’s truncation. J. Amer. Statist. Assoc. 91 674–688. · Zbl 0869.62032 · doi:10.2307/2291663
[13] Hájek, J. (1962). Asymptotically most powerful rank-order tests. Ann. Math. Statist. 33 1124–1147. · Zbl 0133.42001 · doi:10.1214/aoms/1177704476
[14] Hájek, J. (1968). Asymptotic normality of simple linear rank statistics under alternatives. Ann. Math. Statist. 39 325–346. · Zbl 0187.16401 · doi:10.1214/aoms/1177698394
[15] Hogg, R. V. and Lenth, R. V. (1984). A review of some adaptive statistical techniques. Comm. Statist. A—Theory Methods 13 1551–1579. · Zbl 0552.62019 · doi:10.1080/03610928408828779
[16] Hušková, M. (1977). The rate of convergence of simple linear rank statistics under hypothesis and alternatives. Ann. Statist. 5 658–670. JSTOR: · Zbl 0365.62039 · doi:10.1214/aos/1176343890
[17] Hušková, M. (1984). Adaptive methods. In Handbook of Statistics 4 . Nonparametric Methods (P. R. Krishnaiah and P. K. Sen, eds.) 347–358. North-Holland, Amsterdam.
[18] Hušková, M. and Sen, P. K. (1985). On sequentially adaptive asymptotically efficient rank statistics. Sequential Anal. 4 125–151. · Zbl 0594.62052 · doi:10.1080/07474948508836076
[19] Inglot, T. (1999). Generalized intermediate efficiency of goodness-of-fit tests. Math. Methods Statist . 8 487–509. · Zbl 1103.62342
[20] Inglot, T., Kallenberg, W. C. M. and Ledwina, T. (1998). Vanishing shortcoming of data driven Neyman’s tests. In Asymptotic Methods in Probability and Statistics (B. Szyszkowicz, ed.) 811–829. North-Holland, Amsterdam. · Zbl 0956.62040
[21] Inglot, T., Kallenberg, W. C. M. and Ledwina, T. (2000). Vanishing shortcoming and asymptotic relative efficiency. Ann. Statist. 28 215–238. [Correction (2000) 28 1795.] · Zbl 1106.62328 · doi:10.1214/aos/1016120370
[22] Inglot, T. and Ledwina, T. (1996). Asymptotic optimality of data-driven Neyman’s tests for uniformity. Ann. Statist. 24 1982–2019. · Zbl 0905.62044 · doi:10.1214/aos/1069362306
[23] Inglot, T. and Ledwina, T. (2001a). Intermediate approach to comparison of some goodness-of-fit tests. Ann. Inst. Statist. Math. 53 810–834. · Zbl 1003.62042 · doi:10.1023/A:1014669423096
[24] Inglot, T. and Ledwina, T. (2001b). Asymptotic optimality of data driven smooth tests for location–scale family. Sankhyā Ser. A 63 41–71. · Zbl 0999.62034
[25] Janic-Wróblewska, A. and Ledwina, T. (2000). Data driven rank test for two-sample problem. Scand. J. Statist. 27 281–297. · Zbl 0955.62045 · doi:10.1111/1467-9469.00189
[26] Kallenberg, W. C. M. (1978). Asymptotic Optimality of Likelihood Ratio Tests in Exponential Families . Mathematical Centre Tracts 77 . Math. Centrum, Amsterdam. · Zbl 0497.62028
[27] Kallenberg, W. C. M. (1982). Cramér type large deviations for simple linear rank statistics. Z. Wahrsch. Verw. Gebiete 60 403–409. · Zbl 0493.60037 · doi:10.1007/BF00535723
[28] Kallenberg, W. C. M. (1983). Intermediate efficiency, theory and examples. Ann. Statist. 11 170–182. JSTOR: · Zbl 0512.62057 · doi:10.1214/aos/1176346067
[29] Kallenberg, W. C. M. and Ledwina, T. (1997). Data-driven smooth tests when the hypothesis is composite. J. Amer. Statist. Assoc. 92 1094–1104. · Zbl 1067.62534 · doi:10.2307/2965574
[30] Neuhaus, G. (1982). \(H_0\)-contiguity in nonparametric testing problems and sample Pitman efficiency. Ann. Statist. 10 575–582. JSTOR: · Zbl 0492.62040 · doi:10.1214/aos/1176345798
[31] Neuhaus, G. (1987). Local asymptotics for linear rank statistics with estimated score functions. Ann. Statist. 15 491–512. JSTOR: · Zbl 0632.62045 · doi:10.1214/aos/1176350357
[32] Oosterhoff, J. (1969). Combination of One-sided Statistical Tests. Mathematical Centre Tracts 28 . Math. Centrum, Amsterdam. · Zbl 0193.15901
[33] Oosterhoff, J. and van Zwet, W. R. (1972). The likelihood ratio test for the multinomial distribution. Proc. Sixth Berkeley Symp. Math. Statist. Probab. 1 31–50. Univ. California Press, Berkeley. · Zbl 0233.62007
[34] Sansone, G. (1959). Orthogonal Functions . Interscience, New York. · Zbl 0084.06106
[35] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics . Wiley, New York. · Zbl 0538.62002
[36] Stein, C. (1956). Efficient nonparametric testing and estimation. Proc. Third Berkeley Symp. Math. Statist. Probab. 1 187–195. Univ. California Press, Berkeley. · Zbl 0074.34801
[37] Yurinskii, V. V. (1976). Exponential inequalities for sums of random vectors. J. Multivariate Anal. 6 473–499. · Zbl 0346.60001 · doi:10.1016/0047-259X(76)90001-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.