×

zbMATH — the first resource for mathematics

Diagnostics for dependence within time series extremes. (English) Zbl 1065.62156
Summary: The analysis of extreme values within a stationary time series entails various assumptions concerning its long- and short-range dependence. We present a range of new diagnostic tools for assessing whether these assumptions are appropriate and for identifying structure within extreme events. These tools are based on tail characteristics of joint survivor functions but can be implemented by using existing estimation methods for extremes of univariate independent and identically distributed variables.
Our diagnostic aids are illustrated through theoretical examples, simulation studies and by application to rainfall and exchange rate data. On the basis of these diagnostics we can explain characteristics that are found in the observed extreme events of these series and also gain insight into the properties of events that are more extreme than those observed.

MSC:
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G32 Statistics of extreme values; tail inference
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ancona-Navarrete M., Extremes 3 pp 5– (2000)
[2] Anderson C. W., Statistics for the Environment pp 163– (1993)
[3] Asmussen S., Applied Probability and Queues (1987)
[4] Beirlant J., J. Am. Statist. Ass. 91 pp 1659– (1996)
[5] Berman S. M., Ann. Math. Statist. 35 pp 502– (1964)
[6] Bingham N. H., Regular Variation (1987)
[7] Bortot P., Biometrika 85 pp 851– (1998)
[8] S. G. Coles, and J. A. Tawn (1991 ) Modelling extreme multivariate events . B, 53 , 377 -392 . · Zbl 0800.60020
[9] DOI: 10.1006/jmva.2000.1903 · Zbl 0976.62044
[10] Davis R. A., Adv. Appl. Probab. 21 pp 781– (1989)
[11] Davison A. C., Bootstrap Methods and Their Application (1997) · Zbl 0886.62001
[12] Davison A. C., J. R. Statist. Soc. 52 pp 393– (1990)
[13] Deheuvels P., J. Multiv. Anal. 13 pp 257– (1983)
[14] Deheuvels P., Multivariate Analysis VI pp pp. 145– (1985)
[15] Dekkers A. L. M., Ann. Statist. 17 pp 1833– (1989)
[16] M. J. Dixon, and J. A. Tawn (1997 ) Spatial analyses for the UK coast .Report 112. Proudman Oceanographic Laboratory, Bidston.
[17] Drees H., Ann. Appl. Probab. 10 pp 1274– (2000)
[18] Embrechts P., Modelling Extremal Events (1997) · Zbl 0873.62116
[19] Guillou A., J. R. Statist. Soc. 63 pp 293– (2001)
[20] DOI: 10.1023/A:1011459127975 · Zbl 0979.62040
[21] Hill B. M., Ann. Statist. 3 pp 1163– (1975)
[22] DOI: 10.1016/0304-4149(87)90183-9 · Zbl 0645.60057
[23] Hsing T., Probab. Theory Reltd Flds 78 pp 97– (1988)
[24] Hsing T., Ann. Appl. Probab. 6 pp 671– (1996)
[25] Kratz M.-F., J. Appl. Probab. 34 pp 908– (1997)
[26] Kunsch H. R., Ann. Statist. 17 pp 1217– (1989)
[27] Leadbetter M. R., Z. Wahrsch. Ver. Geb. 65 pp 291– (1983)
[28] Leadbetter M. R., Extremes and Related Properties of Random Sequences and Series (1983) · Zbl 0518.60021
[29] Leadbetter M. R., Proc. 4th Int. Meet. Statistics and Climate (1989)
[30] Ledford A. W., Biometrika 83 pp 169– (1996)
[31] DOI: 10.1111/1467-9868.00080
[32] DOI: 10.1239/aap/1035228000 · Zbl 0905.60034
[33] Liang K.-Y., J. R. Statist. Soc. 58 pp 785– (1996)
[34] DOI: 10.1086/209695
[35] Morgenstern D., Mitt. Math. Statist. 8 pp 234– (1956)
[36] Natural Environment Research Council, The Flood Studies Report (1975)
[37] O’Brien G. L., Ann. Probab. 15 pp 281– (1987)
[38] Pickands J., J. Appl. Probab. 8 pp 745– (1971)
[39] Pickands J., Ann. Statist. 3 pp 119– (1975)
[40] Pickands J., Proc. 43rd Sess. Int. Statist. Inst. pp 859– (1981)
[41] Raab M., Extremes 1 pp 295– (1998)
[42] Reed D. W., Statistics for the Environment 2: Water Related Issues pp 125– (1994)
[43] Resnick S. I., J. Appl. Probab. 32 pp 139– (1995)
[44] Resnick S. I., Ann. Appl. Probab. 8 pp 1156– (1998)
[45] Rootzen H., Adv. Appl. Probab. 15 pp 54– (1983)
[46] Shephard N., Time Series Models in Economics, Finance and Other Fields pp 1– (1996)
[47] Simiu E., Wind Effects on Structures (1986)
[48] Smith R. L., Statist. Sci. 4 pp 367– (1989)
[49] R. L. Smith (1991 ) Regional estimation for spatially dependent data .Technical Report. University of North Carolina, Chapel Hill.
[50] Smith R. L., J. Appl. Probab. 29 pp 37– (1992)
[51] Smith R. L., Biometrika 84 pp 249– (1997)
[52] Smith R. L., J. R. Statist. Soc. 56 pp 515– (1994)
[53] Tawn J. A., J. Hydrol. 101 pp 227– (1988)
[54] Tawn J. A., Biometrika 75 pp 397– (1988)
[55] Yun S., Ann. Appl. Probab. 8 pp 408– (1998)
[56] Yun S., J. Appl. Probab. 37 pp 29– (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.