×

zbMATH — the first resource for mathematics

Topological strings on noncommutative manifolds. (English) Zbl 1065.81108

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T45 Topological field theories in quantum mechanics
58B34 Noncommutative geometry (à la Connes)
81R12 Groups and algebras in quantum theory and relations with integrable systems
81S40 Path integrals in quantum mechanics
83E30 String and superstring theories in gravitational theory
32Q25 Calabi-Yau theory (complex-analytic aspects)
53C26 Hyper-Kähler and quaternionic Kähler geometry, “special” geometry
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Seiberg N., JHEP 9909 pp 032–
[2] E. Witten, Mirror Symmetry I, Mirror manifolds and topological field theory, ed. S.T. Yau (AMS, 1998) pp. 121–160. · Zbl 0904.58009
[3] DOI: 10.1063/1.1374448 · Zbl 1036.81027
[4] DOI: 10.4310/ATMP.2000.v4.n1.a3 · Zbl 0992.81059
[5] DOI: 10.1007/s00220-002-0755-7 · Zbl 1051.17017
[6] Minasian R., JHEP 9711 pp 002–
[7] Witten E., JHEP 9812 pp 019–
[8] DOI: 10.1073/pnas.37.10.704 · Zbl 0045.43101
[9] DOI: 10.1016/S0393-0440(03)00026-3 · Zbl 1029.81058
[10] DOI: 10.1016/0550-3213(84)90592-3
[11] DOI: 10.1016/0550-3213(89)90474-4
[12] DOI: 10.4310/ATMP.1998.v2.n2.a9 · Zbl 0947.14017
[13] DOI: 10.1016/S0550-3213(98)00115-1 · Zbl 0945.81061
[14] Taylor W., JHEP 0007 pp 039–
[15] DOI: 10.1016/S0370-2693(02)01569-1 · Zbl 0994.81090
[16] DOI: 10.1016/0550-3213(93)90033-L · Zbl 0910.14020
[17] Cannas da Silva A., Geometric models for noncommutative algebras (2001) · Zbl 1135.58300
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.