zbMATH — the first resource for mathematics

Hasse invariants for Hilbert modular varieties. (English) Zbl 1066.11018
Summary: Given a totally real field \(L\) of degree \(g\), we construct \(g\) Hasse invariants on Hilbert modular varieties in characteristic \(p\) and characterize their divisors. We show that these divisors give the type stratification defined by the action of \({\mathcal 0}_L\) on the \(\alpha_p\)-elementary subgroup. Under certain conditions, involving special values of zeta functions, the product of these Hasse invariants is the reduction of an Eisenstein series of weight \(p-1\).

11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
11G18 Arithmetic aspects of modular and Shimura varieties
14G35 Modular and Shimura varieties
Full Text: DOI
[1] P. Deligne and G. Pappas,Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant, Compositio Mathematica90 (1994), 59–74. · Zbl 0826.14027
[2] P. Deligne and K. Ribet,Values of Abelian L-functions at negative integers over totally real fields, Inventiones Mathematicae59 (1980), 227–286. · Zbl 0434.12009
[3] J. S. Ellenberg,Hilbert modular forms and the Galois representations associated to Hilbert-Blumenthal abelian varieties, Thesis, Harvard University, May 1998.
[4] G. van der Geer,Hilbert modular surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete,3 Folge, Band16 of Modern Surveys in Mathematics, Springer-Verlag, Berlin-Heidelberg, 1988. · Zbl 0634.14022
[5] E. Z. Goren,Hilbert modular varieties in positive characteristic, inProceedings of NATO ASI and CRM Summer School on The Arithmetic and Geometry of Algebraic Cycles, to appear, 21 pp.
[6] E. Z. Goren,Hilbert modular forms modulo p m –the unramified case, CICMA preprint 1998–10, submitted, 22 pp.
[7] E. Z. Goren,Hilbert modular forms modulo p m –the unramified case II, in preparation. · Zbl 0992.11035
[8] E. Z. Goren and F. Oort,Stratifications of Hilbert modular varieties, Journal of Algebraic Geometry, to appear, 44 pp. · Zbl 0973.14010
[9] N. M. Katz,p-Adic L-functions via moduli of elliptic curves, Proceedings of Symposia in Pure Mathematics29 (1975), 479–506. · Zbl 0317.14009
[10] N. M. Katz,p-Adic L-functions for CM fields, Inventiones Mathematicae49 (1978), 199–297. · Zbl 0417.12003
[11] M. Rapoport,Compactifications de l’espace de modules de Hilbert-Blumenthal, Compositio Mathematica36 (1978), 255–335. · Zbl 0386.14006
[12] K. A. Ribet,p-Adic interpolation via Hilbert modular forms, Proceedings of Symposia in Pure Mathematics29 (1975), 581–592.
[13] J-P. Serre,Cohomologie des groupes discrets, Annals of Mathematics Studies70, Princeton University Press, 1971. · Zbl 0229.57016
[14] J-P. Serre,Formes modulaires et fonctions zêta p-adiques, inProceedings of the 1972 Antwerp Summer School, Lecture Notes in Mathematics350, Springer-Verlag, Berlin, 1973, pp. 191–268.
[15] J. H. Silverman,Wieferìch’s criterion and the abc-conjecture, Journal of Number Theory30 (1988), 226–237. · Zbl 0654.10019
[16] L. C. Washington,Introduction to Cyclotomic Fields, GTM 83, Springer-Verlag, Berlin, 1982. · Zbl 0484.12001
[17] D. Zagier,On the values at negative integers of the zeta-function of a real quadratic field, L’Enseignement Mathématique22 (1976), 55–95. · Zbl 0334.12021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.