×

zbMATH — the first resource for mathematics

Characteristic cycles of perverse sheaves and Milnor fibers. (English) Zbl 1066.14005
Math. Z. 249, No. 3, 493-511 (2005); addendum ibid. 250, No. 3, 729 (2005).
The authors consider complex hypersurfaces with isolated singular points and irreducible perverse sheaves having the singularities of such hypersurfaces. They show that the Milnor monodromy and the Milnor numbers appear naturally in the characteristic cycles of such sheaves. They also find a new numerical constraint concerning the number and sizes of Jordan blocks with a given eigenvalue in the Milnor monodromy for general hypersurface singularities.

MSC:
14B05 Singularities in algebraic geometry
32C38 Sheaves of differential operators and their modules, \(D\)-modules
32S40 Monodromy; relations with differential equations and \(D\)-modules (complex-analytic aspects)
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers. Astérisque 100, 1982 · Zbl 0536.14011
[2] Biosca, H., Briancon, J., Maisonobe, P., Maynadier, H.: Espaces conormaux relatifs. II. Modules differentiels, Publ. Res. Inst. Math. Sci. 34, 123-134 (1998) · Zbl 0970.32014
[3] Brieskorn, E.: Beispiele zur differential topologie von singularitäten. Invent. Math. 2, 1-14 (1966) · Zbl 0145.17804
[4] Dimca, A.: Singularity and topology of hypersurfaces. Universitext, Springer, 1992 · Zbl 0753.57001
[5] van Doorn, M., Steenbrink, J.: A supplement to the monodromy theorem. Abh. Math. Sem. Univ. Hamburg 59, 225-233 (1989) · Zbl 0712.32022
[6] Ginsburg, V.: Characteristic cycles and vanishing cycles. Invent. Math. 84, 327-402 (1986) · Zbl 0598.32013
[7] Gurjar, R.V.: A hyperplane section theorem for Milnor numbers. Math. Ann. 309, 341-357 (1997) · Zbl 0887.14003
[8] Gyoja, A.: Theory of prehomogeneous vector spaces without regularity condition, Publ. Res. Inst. Math. Sci. 27, 861-922 (1991) · Zbl 0773.14025
[9] Kashiwara, M.: Index theorem for a maximally overdetermined system of linear differential equations. Proc. Japan Acad. 49, 803-804 (1973) · Zbl 0305.35073
[10] Kashiwara, M.: Systems of microdifferential equations. Progress in Mathematics 34, Birkhauser, 1983 · Zbl 0521.58057
[11] Kashiwara, M.: Vanishing cycles sheaves and holonomic systems of differential equations. L. N. in Math. 1016, Springer, 1983, pp. 134-142 · Zbl 0566.32022
[12] Kashiwara, M.: The Riemann-Hilbert problem for holonomic systems. Publ. Res. Inst. Math. Sci. 20, 319-365 (1984) · Zbl 0566.32023
[13] Kashiwara, M.: On the theory of b-functions (written by A. D?Agnolo and C. Marastoni), an appendix in C. Marastoni?s PhD thesis in Paris VI, 1997
[14] Kashiwara, M.: D-modules and microlocal calculus. Am. Math. Soc. Iwanami Series in Mod. Math. 217, 2003 · Zbl 1017.32012
[15] Kashiwara, M., Kawai, T.: Second microlocalization and asymptotic expansions. Lecture Notes in Phys. 126, Springer, 1980, pp. 21-76 · Zbl 0458.46027
[16] Kashiwara, M., Schapira, P.: Sheaves on manifolds. Grundlehren der Mathematischen Wissenschaften 292, Springer, 1990 · Zbl 0709.18001
[17] Kato, M., Matsumoto, Y.: On the connectivity of the Milnor fiber of a holomorphic function at a critical point. Manifolds Tokyo 1973, University of Tokyo Press, 1975, pp. 131-136
[18] MacPherson, R.: Chern classes for singular varieties. Ann. Math. 100, 423-432 (1974) · Zbl 0311.14001
[19] Malgrange, B.:Intégrales asymptotiques et monodromies. Ann Sci Ecole Norm. Sup. 7, 405-430 (1974) · Zbl 0305.32008
[20] Massey, D.: Numerical invariants of perverses sheaves. Duke Math. J. 73, 307-369 (1994) · Zbl 0799.32033
[21] Massey, D.: Hypercohomology of Milnor fibers. Topology 35, 969-1003 (1996) · Zbl 0855.32020
[22] Mebkhout, Z.: Une autre équivalence de catégories. Composito Math. 51, 63-88 (1984) · Zbl 0566.32021
[23] Milnor, J.: Singular points of complex hypersurfaces. Annals of Mathematics Studies 61 , Princeton university press, 1968 · Zbl 0184.48405
[24] Milnor, J., Orlik, P.: Isolated singularities defined by weighted homogeneous polynomials. Topology 9, 385-393 (1970) · Zbl 0204.56503
[25] Mori, S.: On a hyperplane section theorem of Gurjar. Math. Ann. 319, 533-537 (2001) · Zbl 0976.14001
[26] Nang, P.: D-modules associated to the group of similitudes. Publ. Res. Inst. Math. Sci. 35, 223-247 (1999) · Zbl 0958.35019
[27] Pham, F.: Formules de Picard-Lefschetz généralisées et ramification des intégrales. Bull. Soc. Math. France 93, 333-367 (1965) · Zbl 0192.29701
[28] Sato, M., Kawai, T., Kashiwara, M.: Hyperfunctions and Pseudodifferential equations. L. N. in Math. 287, Springer, 1973, pp. 265-529
[29] Takeuchi, K.: Dimension formulas for the hyperfunctions solutions to holonomic D-modules. Adv. Math. 180, 134-145 (2003) · Zbl 1066.32014
[30] Vilonen, K.: Intersection homology D-module on complete intersections with isolated singularities. Invent. Math. 81, 107-114 (1985) · Zbl 0578.14018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.