zbMATH — the first resource for mathematics

On the linearity of Artin braid groups. (English) Zbl 1066.20044
The author proves that all Artin groups of crystallographic type have a faithful representation of dimension the number of reflections of the associated Coxeter group. The faithfulness criterion which is used is that of D. Krammer [Ann. Math. (2) 155, No. 1, 131-156 (2002; Zbl 1020.20025)].

20F36 Braid groups; Artin groups
57M07 Topological methods in group theory
20C15 Ordinary representations and characters
Full Text: DOI
[1] Bourbaki, N., Groupes et algèbres de Lie, (1981), Hermann Paris, Chapitres IV-VI · Zbl 0483.22001
[2] Cohen, A.; Wales, D., Linearity of Artin groups of finite type, preprint · Zbl 1078.20038
[3] Deligne, P., LES immeubles des groupes de tresses généralisés, Invent. math., 17, 273-302, (1972) · Zbl 0238.20034
[4] Dyer, M., Reflection subgroups of Coxeter systems, J. algebra, 135, 1, 57-73, (1990) · Zbl 0712.20026
[5] D. Krammer, Braid groups are linear, preprint, 2000 · Zbl 0988.20023
[6] Michel, J., A note on words in braid monoids, J. algebra, 215, 366-377, (1999) · Zbl 0937.20017
[7] Papi, P., A characterization of a special ordering in a root system, Proc. amer. math. soc., 120, 3, 661-665, (1994) · Zbl 0799.20037
[8] M. Zinno, On Krammer’s representation of the braid group, preprint, 2000 · Zbl 1042.20023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.