Palese, M.; Winterroth, E. Covariant gauge-natural conservation laws. (English) Zbl 1066.58009 Rep. Math. Phys. 54, No. 3, 349-364 (2004). Summary: When a gauge-natural invariant variational principle is assigned, to determine canonical covariant conservation laws, the vertical part of gauge-natural lifts of infinitesimal principal automorphisms – defining infinitesimal variations of sections of gauge-natural bundles – must satisfy generalized Jacobi equations for the gauge-natural invariant Lagrangian. Vice versa all vertical parts of gauge-natural lifts of infinitesimal principal automorphisms which are in the kernel of generalized Jacobi morphisms are generators of canonical covariant currents and superpotentials. In particular, only a few gauge-natural lifts can be considered as canonical generators of covariant gauge-natural physical charges. Cited in 11 Documents MSC: 58E30 Variational principles in infinite-dimensional spaces 58A20 Jets in global analysis 70S10 Symmetries and conservation laws in mechanics of particles and systems 70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems 58A32 Natural bundles 58E40 Variational aspects of group actions in infinite-dimensional spaces Keywords:gauge-natural bundles; invariant variational principles; variational sequences; generalized Jacobi morphisms; conservation laws × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Anderson, J. L.; Bergmann, P. G., Constraints in covariant field theories, Phys. Rev., 83, 5, 1018-1025 (1951) · Zbl 0045.45505 [2] Komar, A., Covariant Conservation Laws in General Relativity, Phys. Rev., 113, 934-936 (1959) · Zbl 0086.22103 [3] Caratheodory, C., Calculus of Variations and Partial Differential Equations of the First Order, ((1982), Chelsea Publ. Co.: Chelsea Publ. Co. Amsterdam), 262 · Zbl 0505.49001 [4] Katz, J., A note on Komar’s anomalous factor, Classical Quantum Gravity, 2, 3, 423-425 (1985) [5] Eck, D. J., Gauge-natural bundles and generalized gauge theories, Mem. Amer. Math. Soc., 247, 1-48 (1981) · Zbl 0493.53052 [6] Fatibene, L.; Francaviglia, M.; Palese, M., Conservation laws and variational sequences in gauge-natural theories, (Math. Proc. Camb. Phil. Soc., 130 (2001)), 555-569 · Zbl 0988.58006 [7] Ferraris, M.; Francaviglia, M., The Lagrangian Approach to Conserved Quantities in General Relativity, (Francaviglia, M., Mechanics, Analysis and Geometry: 200 Years after Lagrange (1991), Elsevier Science Publishers B. V.: Elsevier Science Publishers B. V. New York), 451-488 · Zbl 0717.53060 [8] Francaviglia, M.; Palese, M., Second Order Variations in Variational Sequences, (Steps in Differential Geometry (2001), Inst. Math. Inform.: Inst. Math. Inform. Amsterdam), 119-130, Debrecen 2000 · Zbl 0977.58019 [9] Francaviglia, M.; Palese, M., Generalized Jacobi morphisms in variational sequences, (Proc. XXI Winter School Geometry and Physics. Proc. XXI Winter School Geometry and Physics, Srni 2001 Rend. Circ. Matem. di Palermo., 69 (2002)), 195-208, Serie II, Suppl. · Zbl 1028.58022 [10] Francaviglia, M.; Palese, M.; Vitolo, R., Symmetries in Finite Order Variational Sequences, Czech. Math. J., 52, 127, 197-213 (2002) · Zbl 1006.58014 [11] M. Francaviglia, M. Palese and R. Vitolo: The Hessian and Jacobi Morphisms for Higher Order Calculus of Variations, to appear in Diff. Geom. Appl.; M. Francaviglia, M. Palese and R. Vitolo: The Hessian and Jacobi Morphisms for Higher Order Calculus of Variations, to appear in Diff. Geom. Appl. · Zbl 1065.58010 [12] M. Francaviglia, M. Palese and E. Winterroth: Generalized Bianchi identities in gauge-natural field theories and the curvature of variational principles, preprint.; M. Francaviglia, M. Palese and E. Winterroth: Generalized Bianchi identities in gauge-natural field theories and the curvature of variational principles, preprint. · Zbl 1087.58009 [13] Godina, M.; Matteucci, P., Reductive \(G\)-structures and Lie derivatives, J. Geom. Phys., 47, 1, 66-86 (2003) · Zbl 1035.53035 [14] Kolář, I., A Geometrical Version of the Higher Order Hamilton Formalism in Fibred Manifolds, J. Geom. Phys., 1, 2, 127-137 (1984) · Zbl 0595.58016 [15] Kolář, I.; Michor, P. W.; Slovák, J., Natural Operations in Differential Geometry (1993), Springer: Springer Debrecen, Hungary · Zbl 0782.53013 [16] Kolář, I.; Vitolo, R., On the Helmholtz operator for Euler morphisms, Math. Proc. Cambridge Phil. Soc., 135, 2, 277-290 (2003) · Zbl 1048.58012 [17] Krupka, D., Variational Sequences on Finite Order Jet Spaces, (Janyška, J.; Krupka, D., Proc. Diff. Geom. and its Appl.. Proc. Diff. Geom. and its Appl., Brno, 1989 (1990), World Scientific: World Scientific N.Y.), 236-254 · Zbl 0813.58014 [18] Mangiarotti, L.; Modugno, M., Fibered Spaces, Jet Spaces and Connections for Field Theories, (Modugno, M., Proc. Int. Meet. on Geom. and Phys. (1983), Pitagora Editrice Bologna: Pitagora Editrice Bologna Singapore), 135-165 · Zbl 0539.53026 [19] Matteucci, P., Einstein-Dirac theory on gauge-natural bundles, Rep. Math. Phys., 52, 1, 115-139 (2003) · Zbl 1040.83035 [20] Noether, E., Invariante Variationsprobleme, Nachr. Ges. Wiss. Gött., Math. Phys. Kl., II, 235-257 (1918) · JFM 46.0770.01 [21] M. Palese and E. Winterroth: Global Generalized Bianchi Identities for Invariant Variational Problems on Gauge-natural Bundles, to appear in Arch. Math. (Brno); M. Palese and E. Winterroth: Global Generalized Bianchi Identities for Invariant Variational Problems on Gauge-natural Bundles, to appear in Arch. Math. (Brno) · Zbl 1112.58005 [22] Rund, H., The Hamilton-Jacobi theory in the calculus of variations, ((1966), D. Van Nostrand Company LTD), 127 · Zbl 0141.10602 [23] Saunders, D. J., The Geometry of Jet Bundles (1989), Cambridge Univ. Press: Cambridge Univ. Press London · Zbl 0665.58002 [24] Trautman, A., Noether equations and conservation laws, Commun. Math. Phys., 6, 248-261 (1967) · Zbl 0172.27803 [25] Vitolo, R., Finite Order Lagrangian Bicomplexes, Math. Proc. Camb. Phil. Soc., 125, 1, 321-333 (1999) · Zbl 0927.58008 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.