Wang, Lidong; Liao, Gongfu; Yang, Yu Recurrent point set of the shift on \({\varSigma}\) and strong chaos. (English) Zbl 1067.37011 Ann. Pol. Math. 78, No. 2, 123-130 (2002). Summary: Let \(({\varSigma},\varrho)\) be the one-sided symbolic space (with two symbols), and let \(\sigma\) be the shift on \({\varSigma}\). We use \(A(\cdot)\), \(R(\cdot)\) to denote the set of almost periodic points and the set of recurrent points, respectively. Here, we prove that the one-sided shift is strongly chaotic (in the sense of Schweizer-Smítal) and there is a strongly chaotic set \({\mathcal J}\) satisfying \({\mathcal J}\subset R(\sigma)-A(\sigma)\). Cited in 8 Documents MSC: 37B10 Symbolic dynamics 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior Keywords:recurrent point; shift; strong chaos PDF BibTeX XML Cite \textit{L. Wang} et al., Ann. Pol. Math. 78, No. 2, 123--130 (2002; Zbl 1067.37011) Full Text: DOI